K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2021

Ta có :

\(a^5-a\)

\(=a\left(a^4+1\right)\)

\(=a\left[\left(a^2\right)^2+1^2\right]\)

\(=a\left(a^2-1\right)\left(a^2+1\right)\)

\(=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\) chia hết cho 2 và 3

\(=a\left(a-1\right)\left(a+1\right)\left(a^2-2^2+5\right)\)

\(=a\left(a+1\right)\left(a-1\right)\left(a-2\right)\left(a+2\right)+5\left(n-1\right)\left(n+1\right)\) chia hết cho 5

Mà (2, 3, 5) = 1 \(\Rightarrow a^5-a\) chia hết cho 2, 3 và 5

\(\Rightarrow a^5-a\) chia hết cho 30

\(\Rightarrow\left(đpcm\right)\)

Cách khác:

Ta có: \(a^5-a\)

\(=a\left(a^4-1\right)\)

\(=a\left(a^2-1\right)\left(a^2+1\right)\)

\(=\left(a-1\right)\cdot a\cdot\left(a+1\right)\cdot\left(a^2+1\right)\)

Vì a-1 và a là hai số tự nhiên liên tiếp nên \(\left(a-1\right)\cdot a⋮2\)

\(\Leftrightarrow\left(a-1\right)\cdot a\cdot\left(a+1\right)⋮2\)

mà \(\left(a-1\right)\cdot a\cdot\left(a+1\right)⋮3\)(Do a-1;a;a+1 là ba số tự nhiên liên tiếp)

nên \(\left(a-1\right)\cdot a\cdot\left(a+1\right)⋮6\)

hay \(a^5-a⋮6\)

mà \(a^5-a⋮5\)(Theo định lí Fermat nhỏ, ta có: Nếu \(a^p-a\) có p là số nguyên tố thì \(a^p-a⋮p\), 5 là số nguyên tố)

nên \(a^5-a⋮30\)(đpcm)

13 tháng 1 2016

Có a2 - 1 = (a+1)(a-1) 

Xét tích (a-1)a(a+1) chia hết cho 3

Do a là số ng tố > 3 nên a không chia hết cho 3
=> (a-1)(a+1) chia hết cho 3          (1)

Có a là số lẻ, đặt a = 2k + 1
Do vậy a2 - 1 = 4k(k+1)

Có k(k+1) luôn chia hết cho 2 => ak(k+1) chia hết cho 8            (2)

Từ (1) và (2) suy ra a2 - 1 chia hết cho 24 ( vì (3;8) =1 )

30 tháng 1 2017

Đề bài phải có điều kiện a là số nguyên hay số tự nhiên...gì đó chứ bạn!?

\(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)

Dễ thấy \(\left(a-1\right)a\left(a+1\right)\) là tích của 3 số nguyên liên tiếp 

=>\(\left(a-1\right)a\left(a+1\right)\) chia hết cho 2 và 3

<=> \(\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)\) chia hết cho 2 và 3 (1)

Xét các trường hợp:

+) a=5k => \(\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)=\left(5k-1\right)5k\left(5k+1\right)\left[\left(5k\right)^2+1\right]⋮5\) (\(k\in Z\))

+) a=5k+1 => (a-1)a(a+1)(a2+1)=(5k+1-1)(5k+1)(5k+1+1)[(5k+1)2+1]=5k(5k+1)(5k+2)[(5k+1)2+1]\(⋮5\)

+) a=5k+2 => (a-1)a(a+1)(a2+1)=(5k+2-1)(5k+2)(5k+2+1)[(5k+2)2+1]=(5k+1)(5k+2)(5k+3)(25k2+20k+5)\(⋮5\)

+) a=5k+3 => (a-1)a(a+1)(a2+1)=(5k+3-1)(5k+3)(5k+3+1)[(5k+3)2+1]=(5k+2)(5k+3)(5k+4)(25k2+30k+10)\(⋮5\)

+) a=5k+4 => (a-1)a(a+1)(a2+1)=(5k+4-1)(5k+4)(5k+4+1)[(5k+4)2+1]=(5k+3)(5k+4)(5k+5)[(5k+4)2+1]\(⋮5\)

=>\(\left(a-1\right)a\left(a+1\right)\left(a^2+1\right)\) chia hết cho 5 (2)

Từ (1) và (2) => đpcm

30 tháng 1 2017

khổ quá ko có bạn ạ, nếu có mình đã ko hỏi

Ta có: (a^5-a)= a(a^4-1)

= a(a^2-1)(a^2+1) 

= a(a-1)(a+1)(a^2+1) 

= a(a-1)(a+1)(a^2-4+5) 

= a(a-1)(a+1)(a-2)(a+2) + 5a(a-1)(a+1) 

Do a(a-1)(a+1)(a-2)(a+2) là tích 5 số tự nhiên liên tiếp => chia hết cho 2,3,5 => chia hết cho 2.3.5=30 

5a(a-1)(a+1) chia hết cho 2,3,5 => chia hết cho 2.3.5=30 

=> a^5-a chia hết cho 30  

=> (a^5-a)+(b^5-b)+(c^5-c) chia hết cho 30 

Mà a+b+c chia hết cho 30 

=> a^5+b^5+c^5 chia hết cho 30

16 tháng 8 2015

a5 - a = a( a4 + 1)

= a[ ( a2)2 + 12 ]

= n ( n2 - 1)( n2 + 1)

= n( n - 1)( n + 1) ( n2 + 1) : hết cho 2 và 3

= n( n - 1)( n + 1) ( n2 - 22 + 5)

= n( n - 1)( n + 1)( n - 2) ( n + 2) + 5( n - 1)( n + 1)n : hết cho 5

mà ( 2 ; 3 ; 5) = 1 => a5 - a : hết cho 2 . 3 .5

16 tháng 8 2015

a5-a=a(a4-1)=a(a2-1)(a2+1)=a(a-1)(a+1)(a2-4+5)=a(a-1)(a+1)(a2-4)+5a(a-1)(a+1)

=a(a-1)(a+1)(a-2)(a+2)+5a(a-1)(a+1)

Do a(a-1)(a+1)(a-2)(a+2) là tích 5 số nguyên liên tiếp nên tồn tại 1 số chia hết cho 2;1 số chie hết cho 3 và 1 số chia hết cho 5

=>a(a-1)(a+1)(a-2)(a+2) chia hết cho 30

a(a-1)(a+1) chia hết cho 6 do là tích 3 số nguyên liên tiếp

=>5a(a-1)(a+1) chia hết cho 30

=>a(a-1)(a+1)(a2-4)+5a(a-1)(a+1) chia hết cho 30

=>đpcm

21 tháng 7 2019

Ta có : \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)

\(=a\left(a-1\right)\left(a+1\right)\left(a^2-4+5\right)\)

\(=a\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)+5a\left(a-1\right)\left(a+1\right)\)

Vì \(a-2,a-1,a,a+1,a+2\) là 5 số nguyên liên tiếp nên h của chúng chia hết cho 5 và chia hết cho 2

\(=>a^5-a⋮5\)(1)

Mà a-1 và a+1 là 2 số tự nhiên liên tiếp nên h chúng chia hết cho 2 

\(a^5-a⋮2\)(2)

Từ (1) và (2) suy ra \(a^5-a⋮30\)

Tương tự ta có : \(b^5-b⋮30;c^5-c⋮30\)

\(=>a^5+b^5+c^5-\left(a+b+c\right)⋮30\)

Mà \(a+b+c=2020⋮30\) nên \(a^5+b^5+c^5⋮30\)

30 tháng 6 2017

Có \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a^2-4+5\right)\)

\(=a\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)+5\text{a}\left(a-1\right)\left(a+1\right)\)
Có a(a-1)(a+1)(a-2)(a+2) là 5 số tự nhiên liên tiếp => có 1 số chia hết cho 5, 1 số chia hết cho 3 và 1 số chia hết cho 2 => chia hết cho 30
a(a-1)(a+1) là 3 số tự nhiên liên tiếp => có 1 số chia hết cho 2 và 1 số chia hết cho 3 => 5a(a-1)(a+1) chia hết cho 30 
vậy tổng của chúng chia hết cho 30
=> đpcm

28 tháng 11 2016

\(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)

Trước hết, \(a\left(a-1\right)\left(a+1\right)\)là tích của 3 số tự nhiên liên tiếp nên chia hết cho 3 (1)

Lại có \(a^5=a^{4.1}.a\)

TH1 : a chẵn, coi chữ số tận cùng của a là n \(\Rightarrow a^5=a^{4.1}.a=\left(...6\right).n=\left(...n\right)\)(Vì 6 nhân với chữ số chẵn nào cũng có tận cùng là chữ số đó )

TH2 : a lẻ, coi chữ số tận cùng của a là m \(\Rightarrow a^5=a^{4.1}.a=\left(...1\right).m=\left(...m\right)\)

Do đó \(a^5\)và \(a\)luôn có cùng chữ số tận cùng

\(\Rightarrow a^5-a\)chia hết cho 10 (2)

Từ (1)(2)\(\Rightarrow a^5-a\in BC\left(3;10\right)=B\left(30\right)\) ( Vì ƯCLN(3;10)=1 )

Vậy ...

1 tháng 9 2019

1) a, Chứng minh a^5-a chia hết cho 5

b, Chứng minh a^7-a chia hết cho 7

1 tháng 9 2019

Phạm Lý câu tl này là bỏ.

Câu 1 mik gửi link r đs