Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3: =>a^2c^2+a^2d^2+b^2c^2+b^2d^2>=a^2c^2+2abcd+b^2d^2
=>a^2d^2-2abcd+b^2c^2>=0
=>(ad-bc)^2>=0(luôn đúng)
a) \(2^n>2n+1\) (1)
Với n=3 thì (1) <=> \(2^3>2.3+1\) (đúng)
Giả sử (1) đúng đến n=k => \(2^k-2k-1>0\)
Ta có: \(2^{k+1}-2\left(k+1\right)-1=2\left(2^k-2k-1\right)+2k-1>0\) (với \(k>3\))
=> \(2^{k+1}>2\left(k+1\right)+1\) (1) đúng đến n=k+1
Theo quy nạp thì (1) đúng
b) \(2^n\ge n^2\) (2)
Với n=4 thì (2) <=> \(2^4\ge4^2\) (đúng)
Giả sử (2) đúng đến n=k => \(2^k-k^2\ge0\)
Ta có: \(2^{k+1}-\left(k+1\right)^2=2\left(2^k-k^2\right)+\left(k-1\right)^2\ge0\)
=> \(2^{k+1}\ge\left(k+1\right)^2\) => (2) đúng đến n=k+1
Theo nguyên lí quy nạp thì (2) đúng
3: =>a^3+b^3+c^3>=3abc
=>(a+b)^3+c^3-3ab(a+b)-3abc>=0
=>(a+b+c)(a^2+b^2+c^2-ab-bc-ac)>=0
=>a^2+b^2+c^2-ab-bc-ac>=0
=>2a^2+2b^2+2c^2-2ab-2bc-2ac>=0
=>(a-b)^2+(a-c)^2+(b-c)^2>=0(luôn đúng)
Từ pt ta có: \(-\left(1+x^4\right)=\text{ax}^3+bx^2+cx\)
Áp dụng BĐT B.C.S:
\(\left(1+x^4\right)^2=\left(\text{ax}^3+bx^2+cx\right)^2\le\left(a^2+b^2+c^2\right)\left(x^6+x^4+x^2\right)\)\(\Rightarrow\left(a^2+b^2+c^2\right)\ge\frac{\left(1+x^4\right)^2}{x^6+x^4+x^2}\left(1\right)\)
Mặt khác: \(\frac{\left(1+x^4\right)^2}{x^6+x^4+x^2}\ge\frac{4}{3}\left(2\right)\)
Thật vậy: \(\left(2\right)\Leftrightarrow3\left(1+2x^4+x^8\right)\ge4\left(x^6+x^4+x^2\right)\)
\(\Leftrightarrow3x^8-4x^6+2x^4-4x^2+3\ge0\)
\(\Leftrightarrow\left(x^2-1\right)^2\left(3x^4+2x^2+3\right)\ge0\)(luôn đúng)
Từ 1 và 2 : \(a^2+b^2+c^2\ge\frac{4}{3}\)
Dấu '=' xảy ra khi và chỉ khi \(\orbr{\begin{cases}a=b=c=\frac{2}{3}\left(x=1\right)\\a=b=c=\frac{-2}{3}\left(x=-1\right)\end{cases}}\)
\(BDT\Leftrightarrow a^4-a^3b+b^4-ab^3\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a^3-b^3\right)\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left[\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\right]\ge0\) *đúng*
Khi \(a=b\)