Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1.\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\)
\(\Rightarrow a^2+b^2+c^2+3\ge2\left(a+b+c\right)\)
Dấu "=" xảy ra khi \(a=b=c=1\)
\(2.\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\frac{a^2}{4}\ge0\)
\(\Leftrightarrow a^2+b^2+c^2+d^2\ge a\left(b+c+d\right)\)
Dấu "=" xảy ra khi \(a=b=c=0\)
\(3.\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\left(\frac{a}{2}-e\right)^2\ge0\)
\(\Leftrightarrow a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
Dấu "=" xảy ra khi \(\frac{a}{2}=b=c=d=e\)
4. Ta có: \(\left(a-b\right)^2\ge0\Rightarrow a^2+b^2\ge2ab\)
\(\left(c-d\right)^2\ge0\Rightarrow c^2+d^2\ge2cd\)
\(\Rightarrow a^2+b^2+c^2+d^2\ge2ab+2cd\)
\(\Rightarrow a^2+b^2+c^2+d^2+ab+cd\ge3ab+3cd\)
Ta lại có:\(\left(\sqrt{ab}-\sqrt{cd}\right)^2\ge0\Rightarrow ab+cd\ge2\sqrt{abcd}=2\)
\(\Rightarrow3\left(ab+cd\right)\ge6\)
\(\Rightarrow a^2+b^2+c^2+d^2+ab+cd\ge3\left(ab+cd\right)\ge6\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}a=b\\c=d\\ab=cd\end{cases}}\Leftrightarrow a=b=c=d\)
Áp dụng bđt AM-GM:
\(\frac{a^2}{4}+b^2\ge ab\)
\(\frac{a^2}{4}+c^2\ge ac\)
\(\frac{a^2}{4}+d^2\ge ad\)
\(\frac{a^2}{4}+e^2\ge ae\)
Cộng theo vế: \(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
\("="\Leftrightarrow\frac{a}{2}=b=c=d=e\)
\(a^2+b^2+c^2+d^2+e^2-a\left(b+c+d+e\right)\)
\(=\left(\frac{a^2}{4}-ab+b^2\right)+\left(\frac{a^2}{4}-ac+c^2\right)+\left(\frac{a^2}{4}-ad+d^2\right)+\left(\frac{a^2}{4}-ae+e^2\right)\)
\(=\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\left(\frac{a}{2}-e\right)^2\ge0\forall a,b,c,d,e\)
\(\Rightarrow a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
Dấu "=" xảy ra khi \(\frac{a}{2}=b=c=d=e\)
1, Ta có: \(\left(x-1\right)^2\ge0\Leftrightarrow x^2-2x+1\ge0\Leftrightarrow x^2+1\ge2x\) (1)\(\left(y-1\right)^2\ge0\Leftrightarrow y^2-2y+1\ge0\Leftrightarrow y^2+1\ge2y\) (2)\(\left(z-1\right)^2\ge0\Leftrightarrow z^2-2z+1\ge0\Leftrightarrow z^2+1\ge2z\) (3)
Từ (1), (2) và (3) suy ra:
\(x^2+1+y^2+1+z^2+1\ge2x+2y+2z\)
<=> \(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\) \(\xrightarrow[]{}\) đpcm
5. a, Ta có: \(\left(x-1\right)^2\ge0\Leftrightarrow x^2-2x+1\ge0\Leftrightarrow x^2+1\ge2x\) (1)
\(\left(y-1\right)^2\ge0\Leftrightarrow y^2-2y+1\ge0\Leftrightarrow y^2+1\ge2y\) (2)
\(\left(z-1\right)^2\ge0\Leftrightarrow z^2-2z+1\ge0\Leftrightarrow z^2+1\ge2z\) (3)
Từ (1),(2) và (3) suy ra:
\(x^2+1+y^2+1+z^2+1\ge2x+2y+2z\)
<=> \(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)
mà x+y+z=3
=>\(x^2+y^2+z^2+3\ge2.3=6\)
<=> \(x^2+y^2+z^2\ge6-3=3\)
<=> \(A\ge3\)
Dấu "=" xảy ra khi x=y=z=1
Vậy GTNN của A=x2+y2+z2 là 3 khi x=y=z=1
b, Ta có: x+y+z=3
=> \(\left(x+y+z\right)^2=9\)
<=> \(x^2+y^2+z^2+2xy+2yz+2xz=9\)
<=> \(x^2+y^2+z^2=9-2xy-2yz-2xz\)
mà \(x^2+y^2+z^2\ge3\) (theo a)
=> \(9-2xy-2yz-2xz\ge3\)
<=> \(-2\left(xy+yz+xz\right)\ge3-9=-6\)
<=> \(xy+yz+xz\le\dfrac{-6}{-2}=3\)
<=> \(B\le3\)
Dấu "=" xảy ra khi x=y=z=1
Vậy GTLN của B=xy+yz+xz là 3 khi x=y=z=1
a.
\(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)
\(\Leftrightarrow2a^4+2b^4\ge a^4+ab^3+a^3b+b^4\)
\(\Leftrightarrow a^4+b^4\ge ab^3+a^3b\)
\(\Leftrightarrow a^4-a^3b+b^4-ab^3\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)(*)
Mà \(a^2+ab+b^2=\left(a^2+2\cdot a\cdot\dfrac{1}{2}b+\dfrac{b^2}{4}\right)+\dfrac{3b^2}{4}=\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\ge0\)
Suy ra (*) đúng => đpcm
Dấu "=" xảy ra khi a = b
b.
\(3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)
\(\Leftrightarrow3a^4+3b^4+3c^4\ge a^4+ab^3+ac^3+a^3b+b^4+bc^3+a^3c+b^3c+c^4\)
\(\Leftrightarrow2a^4+2b^4+2c^4\ge ab^3+a^3b+b^3c+bc^3+ca^3+c^3a\)
\(\Leftrightarrow\left(a^4+b^4\right)+\left(b^4+c^4\right)+\left(c^4+a^4\right)\ge\left(a^3b+ab^3\right)+\left(b^3c+bc^3\right)+\left(c^3a+ca^3\right)\)
Theo câu a. thì điều này đúng
Dấu "=" khi a=b=c
e)
\(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) ( luôn đúng)
=> ĐPCM
\(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2-4ab-4ac-4ad-4ae\ge0\)
\(\Leftrightarrow\left(a^2-4ab+4b^2\right)+\left(a^2-4ac+4c^2\right)+\left(a^2-4ad+4d^2\right)+\left(a^2-4ae-4e^2\right)\ge0\)
\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2\ge0\)
BĐT trên đúng, mà các phép biến đổi là tương đương
\(\RightarrowĐPCM\)
Dấu "=" xảy ra khi a = 2b = 2c = 2d = 2e
Bất đẳng thức đã cho tương đương với:
\[{a^2} + {b^2} + {c^2} + {d^2} + {e^2} - a\left( {b + c + d + e} \right) \ge 0\]
\[ \Leftrightarrow {a^2} - a\left( {b + c + d + e} \right) + {b^2} + {c^2} + {d^2} + {e^2} \ge 0\]
Xét tam thức bậc hai: $f\left( a \right) = {a^2} - a\left( {b + c + d + e} \right) + {b^2} + {c^2} + {d^2} + {e^2}$
Ta có: $\Delta = {\left( {b + c + d + e} \right)^2} - 4\left( {{b^2} + {c^2} + {d^2} + {e^2}} \right)$
Theo bất đẳng thức BCS, ta có: \[{\left( {b + c + d + e} \right)^2} \le \left( {1 + 1 + 1 + 1} \right)\left( {{b^2} + {c^2} + {d^2} + {e^2}} \right) = 4\left( {{b^2} + {c^2} + {d^2} + {e^2}} \right)\]
Suy ra: \[\Delta = {\left( {b + c + d + e} \right)^2} - 4\left( {{b^2} + {c^2} + {d^2} + {e^2}} \right) \le 0 \Rightarrow f\left( a \right) \ge 0,\,\,\forall a \in \mathbb{R} \]
Từ đó ta có đpcm.
d) \(\dfrac{a^2+b^2}{2}\) \(\ge\) \(\left(\dfrac{a+b}{2}\right)^2\)
<=> \(\dfrac{a^2+b^2}{2}\) \(\ge\) \(\dfrac{a^2+2ab+b^2}{4}\)
<=> 4(a2 + b2 ) \(\ge\) 2 ( a2 + 2ab + b2 )
<=> 4a2 + 4b2 \(\ge\) 2a2 + 4ab +2b2
<=> 4a2 + 4b2 - 2a2 - 4ab - 2b2 \(\ge\) 0
<=> 2a2 - 4ab + 2b2 \(\ge\) 0
<=> a2 -2ab +b2 \(\ge\) 0
<=> (a-b)2 \(\ge\) 0 ( luôn đúng)
=> \(\dfrac{a^2+b^2}{2}\) \(\ge\) \(\left(\dfrac{a+b}{2}\right)^2\)
Và dấu bằng xảy ra <=> a = b
e) Làm tương tự nhé! Có gì ko hiểu thì hỏi lại mk! Ok??
\(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
\(\Leftrightarrow\) \(a^2+b^2+c^2+d^2+e^2-ab-ac-ad-ae\ge0\)
\(\Leftrightarrow\) \(4a^2+4b^2+4c^2+4d^2+4e^2-4ab-4ac-4ad-4ae\ge0\)
\(\Leftrightarrow\) \(\left(a^2-4ab+4b^2\right)+\left(a^2-4ac+4c^2\right)\)...\(\ge0\)
\(\Leftrightarrow\) \(\left(a-2b\right)^2\)+\(\left(a-2c\right)^2\)...\(\ge\)0
nhớ tik nha