K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5

CM: a\(^2\) + b\(^2\) + c\(^2\) = (a + b + c)\(^2\) - 2(ab + bc + ca)

Olm chào em, đây là toán nâng cao chuyên đề chứng minh đẳng thức, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết như sau:

Ta có:

(a + b + c)\(^2\) = [(a + b) + c]\(^2\)

⇒ (a + b + c)\(^2\) = (a + b)\(^2\) + 2(a + b)c + c\(^2\)

⇒ (a + b + c)\(^2\) = a\(^2\) + 2ab + \(b^2\) + 2ac + 2bc + c\(^2\)

⇒(a + b + c)\(^2\) = (a\(^2+b^2+c^2\)) + 2(ab + bc + ac)

⇒a\(^2+b^2+c^2\) = (a + b + c)\(^2\) - 2(ab + bc +ac) (đpcm)





NV
2 tháng 4 2019

Bài 1:

a/\(xy\ne0\), nhân cả tử và mẫu với \(xy\) ta được:

\(\frac{x^2+y^2-2xy}{x^2-y^2}=\frac{\left(x-y\right)^2}{\left(x-y\right)\left(x+y\right)}=\frac{x-y}{x+y}\)

b/ \(x\ne\pm1\), nhân cả tử và mẫu với \(x^2-1=\left(x-1\right)\left(x+1\right)\) ta được:

\(\frac{x^2-1-2\left(x-1\right)}{x^2-1-\left(x^2-2\right)}=\frac{x^2-2x+1}{1}=\left(x-1\right)^2\)

c/ \(x\ne\pm1\), nhân cả tử và mẫu với \(\left(x-1\right)\left(x+1\right)\) ta được:

\(\frac{\left(x+1\right)^2-\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)-\left(x-1\right)^2}=\frac{x^2+2x+1-x^2+2x-1}{x^2-1-x^2+2x-1}=\frac{4x}{2x}=2\)

NV
2 tháng 4 2019

Bài 2:

a/ Xem lại đề, thấy có vẻ ko đối xứng lắm, \(\frac{2x+1}{2x-2}\) hay \(\frac{2x+1}{2x-1}\) bạn?

b/ \(x\ne\left\{-1;0;1\right\}\)

\(B=\left(\frac{1}{x\left(x+1\right)}+\frac{x-2}{x+1}\right):\left(\frac{x^2-2x+1}{x}\right)\)

\(B=\left(\frac{1}{x\left(x+1\right)}+\frac{x\left(x+2\right)}{x\left(x+1\right)}\right).\frac{x}{\left(x-1\right)^2}\)

\(B=\frac{\left(x^2+2x+1\right)}{x\left(x+1\right)}.\frac{x}{\left(x-1\right)^2}\)

\(B=\frac{\left(x+1\right)^2}{x\left(x+1\right)}.\frac{x}{\left(x-1\right)^2}=\frac{x+1}{\left(x-1\right)^2}\)

30 tháng 8 2017

a) ( 5x3 - x +2 ) ( x-1 )
= 5x4 -5x3 - x2 + 1 + 2x - 2
= 5x4 -5x3 - x2 2x - 1
b) ( 4x + 4 )(3 - x2 - x3 )
= 12x - 8x3 - 4x4 + 12 - 4x2 - 4x3
= -4x4 - 12x3 -4x2 + 12x + 12

30 tháng 8 2017

a) (5x3-x+2)(x-1) = 5x4-5x3-x2+3x-2

b) (4x+4)(3-x2-x3) = 12x-4x3-4x4+12-4x2-4x3 = -4x4 -8x3 - 4x2 + 12x +12

2 tháng 12 2017

\(a,x^2\left(x-2x^3\right)=x^3-3x^5\)

\(b,\left(x^2+1\right)\left(5-x\right)=5x^2-x^3+5-x\)

\(c,\left(x-2\right)\left(x^2+3x-4\right)=x^3+3x^2-4x-2x^2-6x+8\)

\(=x^3+x^2-10x+8\)

\(d,\left(x-2\right)\left(x-x^2+4\right)=x^2-x^3+4x-2x+2x^2-8\)

\(=x^3+3x^2+2x-8\)

15 tháng 12 2018
https://i.imgur.com/eszN8eV.jpg

Bài 3:

a: ĐKXĐ: x<>2

b: \(M=\dfrac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\dfrac{3}{x-2}\)

c: Khi x=4001/2000 thì \(M=\dfrac{3}{\dfrac{4001}{2000}-2}=3:\dfrac{1}{2000}=6000\)

AH
Akai Haruma
Giáo viên
23 tháng 8 2020

Vy Lê: bạn ơi hướng làm của bài là khai triển biểu thức đơn giản và phát hiện 1 số biểu thức có liên quan đến hằng đẳng thức thôi nên mình nghĩ mình làm như vậy cũng có ngắn lắm đâu nhỉ? Ví dụ như câu c chả hạn. $(2x+3)(4x^2-6x+9)=(2x)^3+3^3$ là hằng đẳng thức đáng nhớ rồi nên mình áp dụng luôn. $2(4x^3-3)=8x^3-6$ theo khai triển thông thường.

AH
Akai Haruma
Giáo viên
23 tháng 8 2020

Lời giải:
a)

$(-x-3)^3+(x+9)(x^2+27)$

$=(x+9)(x^2+27)-(x+3)^3$

$=x^3+27x+9x^2+243-(x^3+9x^2+27x+27)$

$=216$

b)

$(x+2)^3-x(x^2+6x-5)-8$

$=x^3+6x^2+12x+8-x^3-6x^2+5x-8$

$=17x$

c)

$(2x+3)(4x^2-6x+9)-2(4x^3-3)$

$=(2x)^3+3^3-2(4x^3-3)=8x^3+27-8x^3+6=33$

20 tháng 9 2019

Bài 2:

\(A=xy\left(x-2\right)\left(y+6\right)+12x^2-24x+3y^2+18y+36\)

\(A=12x\left(x-2\right)+xy\left(x-2\right)\left(y+6\right)+3y\left(y+6\right)+36\)

Đặt \(x\left(x-2\right)=a;y\left(y+6\right)=b\)

\(A=12a+ab+3b+36\)

\(A=a\left(b+12\right)+3\left(b+12\right)\)

\(A=\left(b+12\right)\left(a+3\right)\)

\(A=\left(x^2-2x+3\right)\left(y^2+6y+12\right)\)

\(A=\left[\left(x-1\right)^2+2\right]\left[\left(y+9\right)^2+3\right]>0\forall x;y\)

Bài 3:

\(3xy+x+15y-164=0\)

\(\Leftrightarrow x\left(3y+1\right)+5\left(3y+1\right)-169=0\)

\(\Leftrightarrow\left(3y+1\right)\left(x+5\right)=169\)

Tới đây xét ước là xong.

p/s: Còn 2 bài trưa về giải nốt em nhé.

20 tháng 9 2019

Bài 4:*Tìm Max

Xét hiệu: \(5x^2+8xy+5y^2-A=4x^2+8xy+4y^2=4\left(x+y\right)^2\ge0\)

Từ đó \(A\le5x^2+8xy+5y^2=72\)

Đẳng thức xảy ra khi x =-y và \(5x^2+8xy+5y^2=72\)

Thay cái phía trược vào thu được (x;y) =(6;-6) và (-6 ; 6)

Vậy Max A là 72.

*Tìm min:

Xét hiệu: \(9A-\left(5x^2+8xy+5y^2\right)=4x^2-8xy+4y^2=4\left(x-y\right)^2\)

Do đó \(9A\ge5x^2+8xy+5y^2=72\Rightarrow A\ge8\)

Đẳng thức xảy ra khi x = y và \(5x^2+8xy+5y^2=72\)

Thay cái phía trược vào thu được (x;y) = (2;2) ; (-2;-2)

Vậy...

P/s: Check lại cái "đẳng thức xảy ra khi..." nhé, có thể nhầm lẫn đấy.