Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)a2+b2+c2+3=2(a+b+c)
=>a2+b2+c2+1+1+1-2a-2b-2c=0
=>(a2-2a+1)+(b2-2b+1)+(c2-2c+1)=0
=>(a-1)2+(b-1)2+(c-1)2=0
=>a-1=b-1=c-1=0 <=>a=b=c=1
-->Đpcm
b)(a+b+c)2=3(ab+ac+bc)
=>a2+b2+c2+2ab+2ac+2bc -3ab-3ac-3bc=0
=>a2+b2+c2-ab-ac-bc=0
=>2a2+2b2+2c2-2ab-2ac-2bc=0
=>(a2- 2ab+b2)+(b2-2bc+c2) + (c2-2ca+a2) = 0
=>(a-b)2+(b-c)2+(c-a)2=0
Hay (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0
=>a-b hoặc b=c hoặc a=c
=>a=b=c
-->Đpcm
c)a2+b2+c2=ab+bc+ca
=>2(a2+b2+c2)=2(ab+bc+ca)
=>2a2+2b2+c2=2ab+2bc+2ca
=>2a2+2b2+c2-2ab-2bc-2ca=0
=>a2+a2+b2+b2+c2+c2-2ab-2bc-2ca=0
=>(a2-2ab+b2)+(b2-2bc+c2)+(a2-2ca+c2)=0
=>(a-b)2+(b-c)2+(a-c)2=0
Hay (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0
=>a-b hoặc b=c hoặc a=c
=>a=b=c
-->Đpcm
Có \(ab+a+b=1\)
=> (1-a)(b-1) + 2ab = 0
=> 2(1-a)(b-1) + 4ab = 0 (1)
Có ab+a+b=1
=> (a+1)(b+1) = 2 (2)
Thay (2) vào (1) ta có \(\left(1-a^2\right)\left(b^2-1\right)+4ab=0\)
<=> \(a^2+b^2+4ab-a^2b^2-1=0\)
<=> \(2a^2+2b^2+4ab=a^2b^2+a^2+b^2+1\)
<=> \(2\left(a+b\right)^2=\left(a^2+1\right)\left(b^2+1\right)\)
+)ta có ab+a+b=1
<=>ab=1-a-b
+)(a2+1).(b2+1)=2(a+b)2
<=>a2b2+a2+b2+1-2(a2+2ab+b2)=0
<=>a2b2+a2+b2+1-2a2-4ab-2b2=00
<=>-3ab-a2-b2+1=0
<=>-ab-2ab-a2-b2+1=0
<=>-(a2+2ab+b2)+1-ab=0
<=>1-(a+b)2-ab=0
<=>(1-a-b)(1+a+b)-ab=0
Mà ab+a+b=1=>ab=1-a-b
<=>ab(1+a+b)-ab=0
<=>ab(1+a+b-1)=0
<=>ab(a+b)=0
Mà ab+a+b=1=>ab=1-a-b
=>(1-a-b)(a+b)=0
Tự giải pt sẽ ra !
Ta có : \(\left(a^2+1\right)\left(b^2+1\right)=\left(a^2+ab+a+b\right)\left(b^2+ab+a+b\right)\)
\(=\left(a+1\right)\left(a+b\right)\left(b+1\right)\left(a+b\right)=\left(ab+a+b+1\right)\left(a+b\right)^2\)
\(=\left(1+1\right)\left(a+b\right)^2=2\left(a+b\right)^2\)(đpcm)
Hãy tích cho tui đi
vì câu này dễ mặc dù tui ko biết làm
Yên tâm khi bạn tích cho tui
Tui sẽ ko tích lại bạn đâu
THANKS
\(a^2+b^2+c^2+3\ge2\left(a+b+c\right)\)
\(\Leftrightarrow a^2+b^2+c^2+3-2a-2b-2c\ge0\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)
Dấu ''='' xảy ra <=> a = b = c = 1
a, a2+b2+c2+3=2(a+b+c)
a2+b2+c2+3-2a-2b-2c=0
(a2-2a+1)+(b2-2b+1)+(c2-2c+1)=0
(a-1)2+(b-1)2+(c-1)2=0
mà (a-1)2+(b-1)2+(c-1)2\(\ge\)0
=>\(\left\{{}\begin{matrix}\left(a-1\right)^2=0\\\left(b-1\right)^2=0\\\left(c-1\right)^2=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a-1=0\\b-1=0\\c-1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a=1\\b=1\\c=1\end{matrix}\right.\)
=> a=b=c=1
Ta có:
\(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\)
\(=\left(a^2+ab+bc+ca\right)\left(b^2+ab+bc+ca\right)\left(c^2+ab+bc+ca\right)\)
\(=\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(b+c\right)\)
\(=\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\) (đpcm)
Ta có:
\(\dfrac{a^2-ab+b^2}{a^2+ab+b^2}=\dfrac{\dfrac{1}{3}\left(a^2+ab+b^2\right)+\dfrac{2}{3}\left(a-b\right)^2}{a^2+ab+b^2}\)
\(=\dfrac{1}{3}+\dfrac{2\left(a-b\right)^2}{3\left(a^2+ab+b^2\right)}\ge\dfrac{1}{3}\)
Dấu = xảy ra khi \(a=b\)