K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2022

\(a^2\left(a+1\right)+2a\left(a+1\right)=a\left(a+1\right)\left(a+2\right),a\inℕ\)

a; a+1;a+2 là ba số tự nhiên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3.

Vì (2;3)=1; tức 2 và 3 nguyên tố cùng nhau nên a(a+1)(a+2) chia hết cho 6 . đpcm

17 tháng 10 2021

\(a^2\left(a+1\right)+2a\left(a+1\right)=a\left(a+1\right)\left(a+2\right)\) là 3 số nguyên liên tiếp nên chia hết cho 6

28 tháng 1 2018

a) A = 1                          b) B = -2.

a) Ta có: \(\dfrac{m^2+2m+1}{m^2-1}\)

\(=\dfrac{\left(m+1\right)^2}{\left(m+1\right)\left(m-1\right)}\)

\(=\dfrac{m+1}{m-1}\)

b) Ta có: \(\dfrac{2a^4+3a^3+2a+3}{\left(a^2-a+1\right)\left(4a+6\right)}\)

\(=\dfrac{a^3\left(2a+3\right)+\left(2a+3\right)}{\left(a^2-a+1\right)\left(4a+6\right)}\)

\(=\dfrac{\left(2a+1\right)\left(a+1\right)\left(a^2-a+1\right)}{2\left(a^2-a+1\right)\left(2a+3\right)}\)

\(=\dfrac{a+1}{2}\)

7 tháng 7 2018

Thực hiện phép tính đối với vế trái của mỗi đẳng thức.

8 tháng 6 2018

5 tháng 8 2023

\(\left(a-1\right)^2\ge0\Rightarrow a^2+1-2a\ge0\Rightarrow a^2+1\ge2a\left(1\right)\)

\(\left(2b-3\right)^2\ge0\Rightarrow4b^2+9-12b\ge0\Rightarrow4b^2+9\ge12b\left(2\right)\)

\(\left(c\sqrt[]{3}-\sqrt[]{3}\right)^2\ge0\Rightarrow3c^2+3-6c\ge0\Rightarrow3c^2+3\ge6c\left(3\right)\)

\(\left(1\right)+\left(2\right)+\left(3\right)\Rightarrow a^2+1+4b^2+9+3c^2+3\ge2a+12b+6c\)

\(\Rightarrow a^2+4b^2+3c^2+1+9+3\ge2a+12b+6c\)

\(\Rightarrow a^2+4b^2+3c^2+13\ge2a+12b+6c\)

\(\Rightarrow a^2+4b^2+3c^2\ge2a+12b+6c-13\)

mà \(2a+12b+6c-13>2a+12b+6c-14\)

\(\Rightarrow a^2+4b^2+3c^2>2a+12b+6c-14\)

\(\Rightarrow dpcm\)

5 tháng 8 2023

 (luôn đúng)

 BĐT ban đầu đúng

7 tháng 11 2019

1) a2(a+1)+2a(a+1)

=(a+1)(a2+2a)

=(a+1)(a2+2a+1-1)

=(a+1)[(a+1)2-12]

=(a+1)(a+1-1)(a+1+1)

=a(a+1)(a+2)

Trong 3 số nguyên liên tiếp luôn có một số chia hết cho 2, một số chia hết cho 3.

=> a(a+1)(a+2)\(⋮\)2.3=6

=> a2(a+1)+2a(a+1)\(⋮\)6 (a thuộc Z)

8 tháng 11 2019

thank bạn