Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(a,A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\\ A=\left(1+2\right)\left(2+2^3+...+2^{2009}\right)=3\left(2+...+2^{2009}\right)⋮3\\ A=\left(2+2^2+2^3\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\\ A=\left(1+2+2^2\right)\left(2+...+2^{2008}\right)=7\left(2+...+2^{2008}\right)⋮7\)
\(b,\left(\text{sửa lại đề}\right)B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\\ B=\left(1+3\right)\left(3+3^3+...+3^{2009}\right)=4\left(3+3^3+...+3^{2009}\right)⋮4\\ B=\left(3+3^2+3^3\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\\ B=\left(1+3+3^2\right)\left(3+...+3^{2008}\right)=13\left(3+...+3^{2008}\right)⋮13\)
Bài 2:
\(a,\Rightarrow2A=2+2^2+...+2^{2012}\\ \Rightarrow2A-A=2+2^2+...+2^{2012}-1-2-2^2-...-2^{2011}\\ \Rightarrow A=2^{2012}-1>2^{2011}-1=B\\ b,A=\left(2020-1\right)\left(2020+1\right)=2020^2-2020+2020-1=2020^2-1< B\)
Trả lời:
1, \(27^{20}-3^{56}=\left(3^3\right)^{20}-3^{56}\)
\(=3^{60}-3^{56}\)
\(=3^{55}.\left(3^5-3\right)\)
\(=3^{55}.\left(243-3\right)\)
\(=3^{55}\times240\)\(⋮240\)
Vậy \(27^{20}-3^{56}\)chia hết cho 240
2, Ta có: \(3a+7b⋮19\)
\(\Leftrightarrow2.\left(3a+7b\right)⋮19\)
\(\Leftrightarrow6a+14b⋮19\)
\(\Leftrightarrow6a+33b-19b⋮19\)
\(\Leftrightarrow3.\left(2a+11b\right)-19b⋮19\)
Do \(19b\)chia hết cho 19. Theo t/c chia hết của 1 hiệu thì \(3.\left(2a+11b\right)⋮19\Leftrightarrow2a+11b⋮19\)
Vậy \(2a+11b\)chia hết cho 19
Ta có A= (3^1+3^2+3^3)+(3^4+3^5+3^6)+......+(3^2008+3^2009+3^2010)
A=3.(1+3+3^2)+3^4.(1+3+3^2)+.....+3^2008.(1+3+3^2)
A=3.13+3^4.13+........+3^2008.13
A=(3+3^4+.....+3^2008).13
=> (3+3^4+.....3^2008) CHIA HẾT 13
VẬY BIEEUT THỨC A= 31+32+33+34+.........+22010 chia hết cho 13
k 2 k kieu gi
a+4b chia het cho 13
=>a+4b=13k (k nguyen)
a=13k-4b
10.a=130k-40b
10.a+b=130k-39b=13(10k-3b) chia het cho 13
5n+1 chia het cho 7=> 5n+1=7k
n=7z+4
a)20 chia hết cho x-4
=>x-4 thuộc U(20)
U(20)={1;2;4;5;10;20}
=>x-4 thuộc {1;2;4;5;10;20}
=>x thuộc {5;6;8;9;14;24}
b)16 chia hết cho x+1
=>x+1 thuộc U(16)
U(16)={1;2;4;8;16}
=>x+1 thuộc {1;2;4;8;16}
=>x thuộc {0;1;3;7;15}
c)75 chia hết cho 2x+1
=>2x+1 thuộc U(75)
U(75)={1;3;5;15;25;75}
=>2x+1 thuộc {1;3;5;15;25;75}
=>x thuộc {0;1;2;7;12;37}
d)38 chia hết cho 2x
=>2x thuộc U(38)
U(38)={1;2;19;38}
=>2x thuộc {1;2;19;38}
=>x thuộc {1;19}
ko hiểu thì ? đừng k sai nha!
a: \(B=3^1+3^2+...+3^{2010}\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)
\(=4\left(3+3^3+...+3^{2009}\right)⋮4\)
\(B=3\left(1+3+3^2\right)+...+3^{2008}\left(1+3+3^2\right)\)
\(=13\left(3+...+3^{2008}\right)⋮13\)
b: \(C=5^1+5^2+...+5^{2010}\)
\(=5\left(1+5\right)+...+5^{2009}\left(1+5\right)\)
\(=6\left(5+...+5^{2009}\right)⋮6\)
\(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)\)
\(=31\left(5+...+5^{2008}\right)⋮31\)
c: \(D=7\left(1+7\right)+...+7^{2009}\left(1+7\right)\)
\(=8\left(7+...+7^{2009}\right)⋮8\)
\(D=7\left(1+7+7^2\right)+...+7^{2008}\left(1+7+7^2\right)\)
\(=57\left(7+...+7^{2008}\right)⋮57\)
\(B=3+3^2+3^3+3^4+...+3^{2009}+3^{2010}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)
\(=4.\left(3+3^3+...+3^{2009}\right)\)
⇒ \(B\) ⋮ 4
b: \(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)=31\cdot\left(5+...+5^{2008}\right)⋮31\)
Bài 1: ( sai đề. mình sửa lại là chia hết cho 31)
Ta có:
\(A=1+5+5^2+...+5^{2013}\)
\(A=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{2011}+5^{2012}+5^{2013}\right)\)
\(A=5^0\cdot\left(1+5+5^2\right)+5^3\cdot\left(1+5+5^2\right)+...+5^{2011}\cdot\left(1+5+5^2\right)\)
\(A=5^0\cdot31+5^3\cdot31+...+5^{2011}\cdot31\)
\(A=31\cdot\left(5^0+5^3+...+5^{2011}\right)\)
Vì \(31⋮31\)
\(\Rightarrow31\cdot\left(5^0+5^3+...+5^{2011}\right)⋮31\)
hay\(A⋮31\) (đpcm)
Này đề là chia hết cho 13 sao lại làm chia hết cho 31 cô mình ra bài này mà