Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi ƯCLN(4n+3,5n+4)=d(d\(\inℕ^∗\))
\(\Rightarrow\)\(\hept{\begin{cases}4n+3⋮d\\5n+4⋮d\end{cases}}\)\(\Rightarrow\)\(\hept{\begin{cases}5\left(4n+3\right)⋮d\\4\left(5n+4\right)⋮d\end{cases}}\)\(\Rightarrow\)\(\hept{\begin{cases}20n+15⋮d\\20n+16⋮d\end{cases}}\)\(\Rightarrow\)(20n+16-20n-15)\(⋮\)d \(\Rightarrow\)1\(⋮\)d \(\Rightarrow\)d=1
\(\Rightarrow\)ƯCLN(4n+3,5n+4)=1 \(\Rightarrow\)Phân số \(\frac{4n+3}{5n+4}\)là phân số tối giản
Vậy phân số \(\frac{4n+3}{5n+4}\)là phân số tối giản (đpcm)

a; CM: A = n(n + 1).(2n + 1) ⋮ 6
A = n(n + 1).(2n + 1)
+ Ta có: n + 1 - n = (n - n) + 1 = 1 (là số lẻ)
Vậy n + 1 và n là hai số khác tính chẵn lẻ, nên một trong hai số nhất định phải có một số là số chẵn mà số chẵn thì luôn chia hết cho 2. Vậy:
A ⋮ 2 ∀ n ∈ N (1)
+ TH1: n = 3k ta có: n ⋮ 3
+ TH2: n = 3k + 1 ta có:
2n + 1 = 2.(3k + 1) + 1= 6k + 2 + 1 = 6k + (2 + 1) = 6k + 3 ⋮ 3
TH3: n = 3k + 2 ta có:
n + 1 = 3k + 2 + 1 = 3k + (2+ 1) = 3k + 3 ⋮ 3
Từ các trường hợp 1; 2; 3 ta có: A ⋮ 3 ∀ n (2)
Kết hợp (1) và (2) ta có: A ⋮ 2 và 3 ⇒ A ∈ BC(2; 3)
2 = 2; 3 = 3; BCNN(2; 3) = 2.3 = 6
Vậy A ∈ B(6) hay A ⋮ 6 ∀ n (đpcm)

a) Ta xét các trường hợp:
+) Với n = 3k \(\left(k\in Z\right)\), ta có \(\left(n-1\right)\left(n+2\right)+12=\left(3k-1\right)\left(3k+2\right)+12\)
Ta thấy (3k - 1)(3k + 2) không chia hết cho 3, 12 chia hết cho 3 nên (3k - 1)(3k + 2) + 12 không chia hết cho 3 hay (3k - 1)(3k + 2) + 12 không chia hết cho 9.
+) Với n = 3k + 1 \(\left(k\in Z\right)\), ta có \(\left(n-1\right)\left(n+2\right)+12=3k\left(3k+3\right)+12=9k\left(k+1\right)+12\)
Ta thấy \(9k\left(k+1\right)⋮9;12⋮̸9\Rightarrow9k\left(k+1\right)+12⋮̸9\)
+) Với n = 3k + 2 \(\left(k\in Z\right)\), ta có: \(\left(n-1\right)\left(n+2\right)+12=\left(3k+1\right)\left(3k+4\right)+12\)
Ta thấy (3k + 1)(3k + 4) không chia hết cho 3, 12 chia hết cho 3 nên (3k + 1)(3k + 4) + 12 không chia hết cho 3 hay (3k + 1)(3k + 4) + 12 không chia hết cho 9.
b) Tương tự bài trên.

Ta có: \(9^{2n}\)luôn có chữ số tận cùng là 1
\(\Rightarrow9^{2n}-1\)luôn có chữ số tận cùng là 0.
\(\Rightarrow\)với \(n\in N\)thì số \(9^{2n}-1\)chia hết cho 2 và 5.

Bài 2:
a: \(10^n-1=\left(10-1\right)\cdot A=9A⋮9\)
b: \(10^n+8=\left(10+8\right)\cdot C=18C⋮9\)

Ta có: \(60⋮5\)nên \(60⋮5\)
\(45⋮15\)
=>\(60.n+45⋮15\)
Ta lại có: \(60⋮30\)nên \(60⋮30\)
Mà 45 ko chia hết cho 30
=> Với mọi n thuộc N thì \(60.n+45⋮15\)nhưng ko chia hết cho 30 ( đpcm )