\(x\ne0,y\ne0\) và \(\left(a^2+b^2\right)\lef...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2017

a) \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)

\(\Leftrightarrow a^2x^2+b^2x^2+a^2y^2+b^2y^2=a^2x^2+b^2y^2+2abxy\)

\(\Leftrightarrow b^2x^2-2abxy+a^2y^2=0\)

\(\Leftrightarrow\left(bx\right)^2-2\cdot bx\cdot ay+\left(ay\right)^2=0\)

\(\Leftrightarrow\left(bx-ay\right)^2=0\Rightarrow bx=ay\Rightarrow\left(\frac{a}{x}=\frac{b}{y}\right)\)

b) \(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\)

\(\Leftrightarrow a^2x^2+b^2x^2+c^2x^2+a^2y^2+b^2y^2+c^2y^2+a^2z^2+b^2z^2+c^2z^2\)

\(=a^2x^2+b^2y^2+c^2z^2+2abxy+2bcyz+2acxz\)

\(\Leftrightarrow b^2x^2-2bxay+a^2y^2+b^2z^2-2bzcy+c^2y^2+a^2z^2-2azcx+c^2x^2=0\)

\(\Leftrightarrow\left(bx-ay\right)^2+\left(bz-cy\right)^2+\left(az-cx\right)^2=0\)

\(\hept{\begin{cases}bx=ay\\bz=cy\\az=cx\end{cases}\Rightarrow\hept{\begin{cases}\frac{a}{x}=\frac{b}{y}\\\frac{b}{y}=\frac{c}{z}\\\frac{a}{x}=\frac{c}{z}\end{cases}}\Rightarrow\left(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\right)}\)

c) \(\left(a+b\right)^2=2\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+b^2+2ab=2a^2+2b^2\)

\(\Leftrightarrow a^2-2ab+b^2=0\)

\(\Leftrightarrow\left(a-b\right)^2=0\Leftrightarrow a=b\)

28 tháng 5 2017

a,  Tương đương   :   \(a^2x^2+a^2y^2+b^2x^2+b^2y^2\)   =   \(a^2x^2+2axby+b^2y^2\)  

                                 \(a^2y^2-2axby+b^2x^2=0\) 

                                 \(\left(ay-bx\right)^2\)  = 0

                                 \(ay-bx=0\)

                                 \(ay=bx\)

                                \(\frac{a}{x}=\frac{b}{y}\)   dpcm

Câu b, c làm tương tự câu a

11 tháng 12 2022

Đặt x/a=y/b=z/c=k

=>x=ak; y=bk; z=ck

\(\dfrac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}=\dfrac{a^2k^2+b^2k^2+c^2k^2}{\left(a\cdot ak+b\cdot bk+c\cdot ck\right)^2}\)

\(=\dfrac{k^2\left(a^2+b^2+c^2\right)}{k^2\left(a^2+b^2+c^2\right)^2}=\dfrac{1}{a^2+b^2+c^2}\)

28 tháng 10 2018

Do \(xy\ne0\Rightarrow x;y\ne0\)

Ta có : \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)

\(\Leftrightarrow a^2x^2+b^2x^2+a^2y^2+b^2y^2=a^2x^2+2axby+b^2y^2\)

\(\Leftrightarrow b^2x^2+a^2y^2=2axby\)

\(\Leftrightarrow b^2x^2+a^2y^2-2axby=0\)

\(\Leftrightarrow\left(bx-ay\right)^2=0\)

Do \(\left(bx-ay\right)^2\ge0\Rightarrow bx-ay=0\)

\(\Rightarrow bx=ay\)

\(\Rightarrow\dfrac{a}{x}=\dfrac{b}{y}\left(đpcm\right)\)

23 tháng 9 2018

Ta có: (a2 + b2)(x2 + y2)

= (ax)2 + a2y2 + b2x2 + (by)2

= (ax + by)2 - 2abxy + a2y2 + b2x2

= (ax + by)2 + (a2y2 + b2x2 - 2abxy)

Mà (a2 + b2)(x2 + y2) = (ax + by)2

\(\Rightarrow\) a2y2 + b2x2 - 2abxy = 0

\(\Rightarrow\) \(\left(ay\right)^2-2.ay.bx+\left(bx\right)^2=0\)

\(\Rightarrow\) \(\left(ay-bx\right)^2=0\)

\(\Rightarrow\) \(ay=bx\)

\(\Rightarrow\dfrac{a}{x}=\dfrac{b}{y}\) (đpcm)

AH
Akai Haruma
Giáo viên
25 tháng 11 2017

Lời giải:

Xét mẫu số:

\(bc(y-z)^2+ac(x-z)^2+ab(x-y)^2=bc(y^2+z^2)+ac(x^2+z^2)+ab(x^2+y^2)-2(bcyz+acxz+abxy)\) (1)

Vì \(ax+by+cz=0\Rightarrow (ax+by+cz)^2=0\)

\(\Leftrightarrow a^2x^2+b^2y^2+c^2z^2+2(abxy+bcyz+acxz)=0\)

\(\Leftrightarrow -2(abxy+bcyz+acxz)=a^2x^2+b^2y^2+c^2z^2\)(2)

Từ \((1);(2)\Rightarrow \text{MS}=bc(y^2+z^2)+ac(x^2+z^2)+ab(x^2+y^2)+a^2x^2+b^2y^2+c^2z^2\)

\(=ax^2(a+b+c)+by^2(a+b+c)+cz^2(a+b+c)\)

\(=(a+b+c)(ax^2+by^2+cz^2)\)

Do đó:

\(P=\frac{ax^2+by^2+cz^2}{(a+b+c)(ax^2+by^2+cz^2)}=\frac{1}{a+b+c}=\frac{1}{2017}\)

6 tháng 10 2017

2) ta có: \(VT=\left(a^2+b^2\right)\left(x^2+y^2\right)\)\(VP=\left(ax+by\right)^2\)

tính hiệu của cả VT và VP

suy ra: \(\left(ay+bx\right)^2=0\Rightarrow ay=bx\)

\(x,y\ne0\Rightarrow\dfrac{a}{x}=\dfrac{b}{y}\left(đpcm\right)\)

3)(a2+b2+c2)(x2+y2+z2)=(ax+by+cz)2 (1)

biến đổi đẳng thức (1) thành (ay+bx)2 + (bz-cy)2 +(az-cx)2 =0

\(\Rightarrow\) Đpcm

25 tháng 2 2018

Phương Ann Nhã Doanh Đinh Đức Hùng Mashiro Shiina

Nguyễn Thanh Hằng Nguyễn Huy Tú Lightning Farron

Akai Haruma Võ Đông Anh Tuấn

mấy anh chị cm cho e thêm cái : \(\dfrac{ay+bx}{c}=\dfrac{bz+cy}{a}=\dfrac{cx+az}{b}\)