Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
23 = 2.2.2 = 8;
24 = 2.2.2.2 = 16;
25 = 2.2.2.2.2 = 32;
26 = 2.2.2.2.2.2 = 64;
27 = 26.2 = 64.2 = 128;
28 = 27.2 = 128.2 = 256;
29 = 28 .2 = 256.2 = 512;
210 = 29.2 = 512.2 = 1024.
G = 21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210
2.G = 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210 + 211
2G - G = (22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210 + 211) - (21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210)
G = 22 + 23 + 24 +25 + 26 + 27 + 28 + 29 + 210 + 211 - 21 -22 -23 -24 - 25 - 26 - 27 - 28 - 29 - 210
G = (22 -22) +(23 - 23) + (24 - 24) + (25 -25) + (26 - 26) +(27 - 27) +(28 -28) + (29 - 29) + (210 - 210) + (211 - 21)
G = 211 - 2
G = 2048 - 2 (đpcm)
b,
G = 21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210
D = 2.(1+ 2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29)
Vì 2 ⋮ 2 nên D = 2.(1+2+22+23+24+25+26+27+28+29)⋮2 (đpcm)
\(a,2^2=4,2^3=8,2^4=16,2^5=32,2^6=64,2^7=128,2^8=256,2^9=512,2^{10}=1024\)
\(b,3^2=9,3^3=27,3^4=81,3^5=243\)
\(c,4^2=16,4^3=64,4^4=256\)
\(d,5^2=25,5^3=125,5^4=625\)
Ta có:
A = 2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210
= (2 + 22) + (23 + 24) + (25 + 26) + (27 + 28) + (29 + 210)
= 2 . (1 + 2) + 23 . (1 + 2) + 25 . (1 + 2) + 27 . (1 + 2) + 29 . (1 + 2)
= 2 . 3 + 23 . 3 + 25 . 3 + 27 . 3 + 29 . 3
= 3 . (2 + 23 + 25 + 27 + 29)
Vậy A ⋮ 3
A = 2 + 22 + 23 + ... + 210 (10 số hạng)
= (2 + 22) + (23 + 24) + ... + (29 + 210) (5 cặp số)
= 2(1 + 2) + 23(1 + 2) + ... + 29(1 + 2)
= (1 + 2)(2 + 23 + ... + 29)
= 3(2 + 23 + ... + 29) \(⋮\)3
=> A \(⋮\)3
1/
Tổng A là tổng các số hạng cách đều nhau 4 đơn vị.
Số số hạng: $(101-1):4+1=26$
$A=(101+1)\times 26:2=1326$
2/
$B=(1+2+2^2)+(2^3+2^4+2^5)+(2^6+2^7+2^8)+(2^9+2^{10}+2^{11})$
$=(1+2+2^2)+2^3(1+2+2^2)+2^6(1+2+2^2)+2^9(1+2+2^2)$
$=(1+2+2^2)(1+2^3+2^6+2^9)$
$=7(1+2^3+2^6+2^9)\vdots 7$
Có vì mỗi số hạng của tổng đều chia hết cho 2 do là lũy thừa của 2
tổng trên chia hết cho 2 vì mỗi số hạng ở tổng trên đều chia hết cho 2
\(A=4+2^3+2^4+2^5+...+2^{20}\)
\(A=2^2+2^3+2^4+2^5+...+2^{20}\)
\(\Rightarrow2A=2^3+2^4+2^5+2^6+...+2^{21}\)
\(\Rightarrow2A-A=\left(2^3+2^4+2^5+2^6+...+2^{21}\right)-\left(2^2+2^3+2^4+2^5+...+2^{20}\right)\)
\(\Rightarrow A=2^{21}-2^2\)
\(=2^2\left(2^{19}-1\right)\)
Vậy A là một lũy thừa của 2.
#kễnh
\(A=2\left(1+2\right)+...+2^7\left(1+2\right)=3\left(2+...+2^7\right)⋮3\)