Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta xét A= \(\frac{1}{5^2}+\frac{1}{6^2}+..+\frac{1}{100^2}\)
\(\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}>\frac{1}{5.6}+\frac{1}{6.7}...+\frac{1}{100.101}\)
=> \(A>\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\)
=> \(A>\frac{1}{5}-\frac{1}{101}\)
=> \(A>\frac{96}{505}>\frac{96}{576}=\frac{1}{4}\)
Ta có : \(A< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
=> \(A< \frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
=> \(A< \frac{1}{4}-\frac{1}{100}\)
=> \(A< \frac{6}{25}< \frac{6}{24}=\frac{1}{4}\)
Ta có:\(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}\)
\(=\frac{1}{3}+\left(\frac{1}{31}+\frac{1}{35}+\frac{1}{37}\right)+\left(\frac{1}{47}+\frac{1}{53}+\frac{1}{61}\right)\)\(< \frac{1}{3}+\left(\frac{1}{30}+\frac{1}{30}+\frac{1}{30}\right)+\left(\frac{1}{45}+\frac{1}{45}+\frac{1}{45}\right)\)\(=\frac{1}{3}+\frac{1}{10}+\frac{1}{15}=\frac{1}{2}\)
Vậy ............
Ta có: 1/3 + 1/31 + 1/35 + 1/37 + 1/47 + 1/53 + 1/61 < 1/3 + 3/31 + 3/47 < 1/3 + 3/30 + 3/45
= 1/3 + 1/10 + 1/15 = 1/3 + (1/30) * (3+2) = 1/3 + (1/0) * 5 = 1/3 + 1/6
= (1/6) * (2+1) = (1/6) * 3 = 1/2.
=> 1/3 + 1/31 + 1/35 + 1/37 + 1/47 + 1/53 + 1/61 < 1/2.
Ủng hộ mk nha mina^^
https://olm.vn/hoi-dap/detail/10399296662.html
Bạn có thể xem ở link này(mik gửi vào tin nhắn)
Chúc hok tốt!!!!!!!!!!!!!!!
Nhận xét:
\(\frac{1}{31}+\frac{1}{35}+\frac{1}{37}< \frac{1}{30}+\frac{1}{30}+\frac{1}{30}=\frac{1}{10}\)
\(\frac{1}{47}+\frac{1}{53}+\frac{1}{61}< \frac{1}{45}+\frac{1}{45}+\frac{1}{45}=\frac{1}{15}\)
\(\Rightarrow\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}< \frac{1}{3}+\frac{1}{10}+\frac{1}{15}=\frac{1}{2}\)
Vậy \(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}< \frac{1}{2}\) (Đpcm)
Cho mình xin lỗi là < 1 chứ không phải 11 đâu