Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(N=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{9^2}\)
\(=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+....+\frac{1}{9.9}\)
\(N\)bé hơn \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{8.9}=N_1\)
\(N_1=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{8.9}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-.........-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)
\(=1-\frac{1}{9}\)
\(=\frac{8}{9}\) \((1)\)
\(N\)lớn hơn \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{9.10}=N_2\)
\(\Rightarrow N_2=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+......+\frac{1}{9.10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-.....-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}\)
\(=\frac{5}{10}-\frac{1}{10}=\frac{2}{5}\) \((2)\)
Từ \((1)\)và \((2)\)suy ra ; \(\frac{2}{5}\)bé hơn N bé hơn \(\frac{8}{9}\)
Học tốt
Nhớ kết bạn với mình
\(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}\)
\(\Rightarrow M< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}\)
\(\Rightarrow M< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}\)
\(\Rightarrow M< 1-\frac{1}{99}< 1\)
Dễ thấy M > 0 nên 0 < M < 1
Vậy M không là số tự nhiên.
\(S=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)
\(\Rightarrow S>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\) (50 số hạng \(\frac{1}{100}\))
\(\Rightarrow S>\frac{1}{100}.50=\frac{1}{2}\)
Vậy \(S>\frac{1}{2}\left(đpcm\right)\)
a, Đặt ƯCLN(12n+1 ; 30n + 2) = d
=> 12n + 1 chia hết cho d và 30n + 2 chia hết cho d
=> 5.(12n + 1) - 2.(30n + 2) = 60n + 5 - 60n + 4 = 1 chia hết cho d
=> d thuộc Ư(1) <=> d = 1
Do đó suy ra điều phải chứng tỏ
\(b)\) Đặt \(B=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\) ta có :
\(B>\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}=\frac{3+3+3+3+3}{15}=\frac{3.5}{15}=\frac{15}{15}=1\)
\(\Rightarrow\)\(B>1\) \(\left(1\right)\)
Lại có :
\(B< \frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}=\frac{3+3+3+3+3}{10}=\frac{3.5}{10}=\frac{15}{10}< \frac{20}{10}=2\)
\(\Rightarrow\)\(B< 2\) \(\left(2\right)\)
Từ (1) và (2) suy ra :
\(1< B< 2\) ( đpcm )
Vậy \(1< B< 2\)
Chúc bạn học tốt ~
câu a
Gọi ƯCLN (12n+1,30n+2) là d
⇒(12n+1)⋮d
(30n+2)⋮d
⇒5(12n+1)−2(30n+2)⋮d
⇒60n+5−60n−4⋮d
⇒1⋮d⇔d=1
Vậy ƯCLN (12n+1,30n+2)=1⇔12n+1/30n+2 là p/s tối giản
Đặt A = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{99^2}\)
=> A < \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\)
=> A < 1 - \(\frac{1}{99}\)= 98/99 < 1
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{99^2}\)< 1
Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{99^2}\)
Ta có : \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{99^2}< \frac{1}{98.99}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{99^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\)
\(\Rightarrow A< 1-\frac{1}{99}\)
\(\Rightarrow A< 1\left(Đpcm\right)\)
Chúc bạn học tốt !!!
Sorry bạn nha , mình bấm nhầm nút
\(A=\frac{5}{4}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(A< \frac{5}{4}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(A< \frac{5}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A< \frac{5}{4}+\frac{1}{2}-\frac{1}{100}< \frac{5}{4}+\frac{1}{2}=\frac{7}{4}\)
\(\Rightarrow\)\(A< \frac{7}{4}\)
Vậy , \(\frac{5}{4}< A< \frac{7}{4}\left(ĐPCM\right)\)
BÀI KHÓ CỦA TRƯỜNG MÌNH ĐÓ THI HK2
GIÚP MÌNH NHÉ!!!!!!THANKS!!!!!!
http://olm.vn/hỏi-đáp/question/584545.html chờ xí tui thấy cái tên rồi giải cho bài 2