Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cách 1:
vì x là số tự nhiên nên x sẽ có 2 trường hợp
Trường hợp 1: x là số lẻ
x+2009 là số chẵn
x+ 2010 là số lẻ
( x+2009) \(⋮2\)
suy ra: ( x + 2009 ).( x + 2010) \(⋮2\)
Trường hợp 2: x là số chẵn
x + 2009 là số lẻ
x + 2010 là số chẵn
( x + 2010 ) chia hết cho 2
suy ra: ( x + 2009 ). ( x + 2010 ) chia hết cho 2
vậy A chia hết cho 2 .
a= (x+2009)(x+2010)
Vì x là stn chia hết cho 2
---> x+2009 là stn lẻ, còn x+2010 là stn chẵn.
Mà LẺ × CHẴN = CHẴN --> (x+2009)(x+2010) chia hết cho 2.
(ab) + (ba) với ab và ba là 2stn
( Mình ko ghi dấu gạch trên đầu vì nó rách việc quá mà mình sẽ ghi A và B nên mong bạn thông cảm)
Ta có:(AB) + (BA) = (10A+B) + (10B+A)
= (10A+A) + (10B+B)
= 11A + 11B
Chúng chia hết cho 11 --->(AB) +(BA) chia hết cho 11
có x+2009 và x+2010 là 2 số liên tiếp => 1 số là chẵn và một số là lẻ
mà 1 số chẵn nhân với 1 số lẻ luôn ra một số chẵn (cái này không cần phải chứng minh)
=> a luôn chia hết cho 2
A=(2009+2009^2)+(2009^3+2009^4)+...+(2009^9+2009^10)
A=[2009.(1+2009)]+[2009^3.(1+2009)]+....+[2009^9.(1+2009)]
A=2009.2010+2009^3.2010+...+2009^9.2010
A=2010(2009+2009^3+2009^5+......+2009^9) chia het cho 2010
Ta có :
\(A=2009+2009^2+2009^3+2009^4+....+2009^{10}\)
Tổng A có số số hạng là :
( 10 - 1 ) : 1 + 1 = 10 ( số hạng )
Vì \(10⋮2\)nên khi ta nhóm 2 số liên tiếp lại thành một căp thì không thừa số nào cả
\(\Rightarrow A=\left(2009+2009^2\right)+\left(2009^3+2009^4\right)+....+\left(2009^9+2009^{10}\right)\)
\(\Rightarrow A=2009.\left(1+2009\right)+2009^3.\left(1+2009\right)+....+2009^9.\left(1+2009\right)\)
\(\Rightarrow A=2009.2010+2009^3.2010+....+2009^9.2010\)
\(\Rightarrow A=2010.\left(2009+2009^3+....+2009^9\right)\)
Vì \(2009+2009^3+....+2009^9\inℤ\)nên \(2010.\left(2009+2009^3+....+2009^9\right)\inℤ\)
Vì \(2010⋮2010\)nên \(A⋮2010\)
Vậy \(A=2009+2009^2+2009^3+....+2009^{10}⋮2010\left(ĐPCM\right)\)
A=[(-1)+(-3)+....+(-2009)]+(2+4+...+2010)
A= {[-2009+(-1)].[(2009-1):2+1]}+{(2010+2).[(2010-2):2+1]}
A= {-2010.[(2009-1):2+1]}+[(2010+2).1005]
Vì có -2010 và 1005 chia hết cho 5 nên 2 tích nhỏ trên chia hết cho 5 suy ra A là tổng của 2 số chia hết cho 5 nên cũng chia hết cho 5.
A = [(-1) + 2] + [(-3) +4] + ... + [(-2009) + 2010]
= 1 + 1 + 1 + ... + 1 (1005 số 1)
= 1005 chia hết cho 5
Bài 1:
a,\(A=3+3^2+3^3+...+3^{2010}\)
\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{2007}+3^{2008}+3^{2009}+3^{2010}\right)\)
\(=3\left(1+3+3^2+3^3\right)+....+3^{2007}\left(1+3+3^2+3^3\right)\)
\(=3.40+...+3^{2007}.40\)
\(=40\left(3+3^5+...+3^{2007}\right)⋮40\)
Vì A chia hết cho 40 nên chữ số tận cùng của A là 0
b,\(A=3+3^2+3^3+...+3^{2010}\)
\(3A=3^2+3^3+...+3^{2011}\)
\(3A-A=\left(3^2+3^3+...+3^{2011}\right)-\left(3+3^2+3^3+...+3^{2010}\right)\)
\(2A=3^{2011}-3\)
\(2A+3=3^{2011}\)
Vậy 2A+3 là 1 lũy thừa của 3