K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2019

a)\(a^3+b^3-ab^2-a^2b\)

\(\Leftrightarrow a\left(a^2-b^2\right)+b\left(b^2-a^2\right)\)

\(\Leftrightarrow a\left(a^2-b^2\right)-b\left(a^2-b^2\right)\)

\(\Leftrightarrow\left(a^2-b^2\right)\left(a-b\right)\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)\left(a-b\right)\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)(a+b>0 và (a-b)2 \(\ge0\))

câu b thì dùng y như bài a

19 tháng 5 2019

a) \(a^3+b^3+ab^2-a^2b\)

=> a ( \(a^2-b^2\)) + b ( \(b^2-a^2\)

=> a ( \(a^2-b^2\)) - b ( \(a^2-b^2\))

=> ( \(a^2-b^2\)) ( a - b )

=> ( a + b ) ( a - b ) ( a - b ) 

=> ( a+ b ) ( a - b ) \(^2\)>= 0 

2 tháng 4 2018

Thực hiện phép nhân đa thức với đa thức ở vế trái. 

=> VT = VP (đpcm)

12 tháng 8 2017

Bài 1 với bài 2 như nhau, đăng làm gì cho tốn công :))

Áp dụng bất đẳng thức Cauchy ta có :

\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}.\frac{bc}{a}}=2b\)

\(\frac{ab}{c}+\frac{ca}{b}\ge2\sqrt{\frac{ab}{c}.\frac{ca}{b}}=2a\)

\(\frac{ac}{b}+\frac{bc}{a}\ge2\sqrt{\frac{ac}{b}.\frac{bc}{a}}=2c\)

Cộng vế với vế ta được :

\(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)\ge2\left(a+b+c\right)\)

\(\Rightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge a+b+c\)(đpcm)

15 tháng 4 2018

Ta có:

\(a^3+b^3=\left(a+b\right)\left(a^2+ab+b^2\right)\)

=>Chia 2 vế cho a+b

Ta có:\(a^2+ab+b^2\ge ab\)

=>Trừ 2 vế cho ab \(a^2+b^2\ge0\)

Vì a>=0 Với mọi a

b2 >= 0 với mọi b

=> a2+b2>= 0 với mọi a,b

Dấu bằng xảy ra khi:

a2=0 và b2=0

=> a=b=0

Vậy \(a^3+b^3\ge ab\left(a+b\right)\) khi a=b=0

Cách 2 a3+b3>=ab(a+b)

=>a3-a2b +b3-ab2>=)

=> a2(a-b)-b2(a-b)>=0

=>(a-b)2(a+b)>=0 vì a,b dương => a+b>=0

=>Th1:(a-b)=0                              Th2:a+b=0

=> a-b=0                                                a=b=0

=>a=b

Vậy a3+b3>= ab(a+b)

11 tháng 4 2021

Nhân 2 vế cho ab(a+b) dương ta có:

`(a+b)^2>=4ab`

`<=>(a-b)^2>=0` luôn đúng

Dấu "=" `<=>a=b`

30 tháng 9 2019

\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)

\(=\frac{a^2}{b}+b+\frac{b^2}{c}+c+\frac{c^2}{a}+a-a-b-c\)

\(\ge2\sqrt{\frac{a^2b}{b}}+2\sqrt{\frac{b^2c}{c}}+2\sqrt{\frac{c^2a}{a}}-a-b-c\)

\(=2a+2b+2c-a-b-c=a+b+c\)

Dấu '=' xảy ra khi a=b=c

30 tháng 9 2019

Áp dụng BĐT Cauchy-Schwarz dạng Engle ta có:

\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\left(đpcm\right)\)

8 tháng 4 2018

Ta có :

\(\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}\)

\(=\frac{b+a}{ab}-\frac{4}{a+b}\)

\(=\frac{\left(a+b\right)^2-4ab}{ab\left(a+b\right)}\)

\(=\frac{a^2+b^2+2ab-4ab}{ab\left(a+b\right)}\)

\(=\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\) ( luôn đúng ) ( do a;b > 0 )

\(\Rightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}a-b=0\\a;b>0\end{cases}}\Rightarrow a=b>0\)

Vậy ...