Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(3+1\sqrt{6}-\sqrt{33}\right)\left(\sqrt{22}+\sqrt{6}+4\right)\)
\(=\sqrt{3}\left(\sqrt{3}+2\sqrt{2}-\sqrt{11}\right).\sqrt{2}\left(\sqrt{11}+\sqrt{3}+2\sqrt{2}\right)\)
\(=\sqrt{6}\left(\sqrt{3}+2\sqrt{2}-\sqrt{11}\right)\left(\sqrt{3}+2\sqrt{2}+\sqrt{11}\right)\)
\(=\sqrt{6}\left[\left(\sqrt{3}+2\sqrt{2}\right)^2-11\right]=\sqrt{6}\left(11+4\sqrt{6}-11\right)=\sqrt{6}.4\sqrt{6}=6.4=24\)
b) \(\left(\frac{1}{5-2\sqrt{6}}+\frac{2}{5+2\sqrt{6}}\right)\left(15+2\sqrt{6}\right)=\left(\frac{5+2\sqrt{6}+10-4\sqrt{6}}{5^2-\left(2\sqrt{6}\right)^2}\right)\left(15+2\sqrt{6}\right)\)
\(=\left(15-2\sqrt{6}\right)\left(15+2\sqrt{6}\right)=15^2-24=201\)
C) \(\left(\frac{4}{3}.\sqrt{3}+\sqrt{2}+\sqrt{3\frac{1}{3}}\right)\left(\sqrt{1,2}+\sqrt{2}-4\sqrt{\frac{1}{5}}\right)\)
\(=\left(\frac{4}{\sqrt{3}}+\frac{\sqrt{6}}{\sqrt{3}}+\frac{\sqrt{10}}{\sqrt{3}}\right)\left(\frac{\sqrt{6}}{\sqrt{5}}+\frac{\sqrt{10}}{\sqrt{5}}-\frac{4}{\sqrt{5}}\right)\)
\(=\frac{1}{\sqrt{15}}\left(\sqrt{6}+\sqrt{10}+4\right)\left(\sqrt{6}+\sqrt{10}-4\right)=\frac{1}{\sqrt{15}}\left[\left(\sqrt{6}+\sqrt{10}\right)^2-16\right]\)
\(=\frac{1}{\sqrt{15}}\left(16+4\sqrt{15}-16\right)=\frac{4\sqrt{15}}{\sqrt{15}}=4\)
d) \(\sqrt{\left(1-\sqrt{1989}\right)^2}.\sqrt{1990+2\sqrt{1989}}=\sqrt{\left(1-\sqrt{1989}\right)^2}.\sqrt{1989+2\sqrt{1989}+1}\)
\(=\sqrt{\left(1-\sqrt{1989}\right)^2}.\sqrt{\left(\sqrt{1989}+1\right)^2}=\left(\sqrt{1989}-1\right)\left(\sqrt{1989}+1\right)=1989-1=1988\)
e) \(\frac{a-\sqrt{ab}+b}{a\sqrt{a}+b\sqrt{b}}-\frac{1}{a-b}=\frac{a-\sqrt{ab}+b}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}-\frac{1}{a-b}=\frac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}-\frac{1}{a-b}=\frac{\sqrt{a}-\sqrt{b}-1}{a-b}\)
TÍNH : \(\left(\sqrt{2}-1\right)^2-\frac{3}{2}\sqrt{\left(-2\right)^2}+\frac{4\sqrt{2}}{5}+\sqrt{1\frac{11}{25}}.\sqrt{2}\)
\(=\left(\sqrt{2}-1\right)^2-\frac{3}{2}.2+\frac{4\sqrt{2}}{5}+\sqrt{\frac{36}{25}}.\sqrt{2}\)
\(=3-2\sqrt{2}-3+\frac{4\sqrt{2}}{5}+\frac{6\sqrt{2}}{5}=\frac{10\sqrt{2}}{5}-2\sqrt{2}=2\sqrt{2}-2\sqrt{2}=0\)
CHỨNG MINH :
Ta có : \(\sqrt{x}\left(1-\sqrt{x}\right)=-x+\sqrt{x}=-\left[\left(\sqrt{x}\right)^2-2.\sqrt{x}.\frac{1}{2}+\frac{1}{4}\right]+\frac{1}{4}=-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)với mọi \(x\ge0\)
Vậy ta có điều phải chứng minh.
\(A=\sqrt{\left(1989-x\right)^2}+\sqrt{\left(1990-x\right)^2}=\left|x-1989\right|+\left|1990-x\right|\)
Áp dụng bất đẳng thức : \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\). Dấu "=" xảy ra khi a,b cùng dấu.
\(A=\left|x-1989\right|+\left|1990-x\right|\ge\left|x-1989+1990-x\right|=1\)
\(\Rightarrow A\ge1\). Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-1989\ge0\\1990-x\ge0\end{cases}}\Leftrightarrow1989\le x\le1990\)
Vậy Min A = 1 \(\Leftrightarrow1989\le x\le1990\)
a) \(\left(\sqrt{ab}+2\sqrt{\frac{b}{a}}-\sqrt{\frac{a}{b}}+\frac{1}{\sqrt{ab}}\right).\sqrt{ab}\) (ĐK : \(\hept{\begin{cases}a>0\\b>0\end{cases}}\)hoặc \(\hept{\begin{cases}a< 0\\b< 0\end{cases}}\))
\(=ab+2b-a+1\)
b) \(\left(-\frac{am}{b}\sqrt{\frac{n}{m}}-\frac{ab}{n}.\sqrt{mn}+\frac{a^2}{b^2}.\sqrt{\frac{m}{n}}\right)\left(a^2b^2.\sqrt{\frac{n}{m}}\right)\) (ĐK bạn tự xét nhé ^^)
\(=\left(-\frac{a\sqrt{mn}}{b}-\frac{ab\sqrt{m}}{\sqrt{n}}+\frac{a^2}{b^2}.\sqrt{\frac{m}{n}}\right)\left(a^2b^2.\sqrt{\frac{n}{m}}\right)\)
\(=a^2b^2\left(\frac{-an}{b}-ab+\frac{a^2}{b^2}\right)=-a^3bn-a^3b^3+a^4=a^3\left(a-bn-b^3\right)\)
- \(A=\left(\sqrt{3}-2\right)^2.\left(\sqrt{3}+2\right)^2=\left[\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)\right]^2=\left(3-4\right)^2=1\)
- \(\sqrt{x-1}+\left(x-1\right)^2=0\left(ĐK:x\ge1\right)\)
\(\Leftrightarrow\sqrt{x-1}\left[1+\left(\sqrt{x-1}\right)^3\right]=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}+1\right)\left(x-\sqrt{x-1}\right)=0\Leftrightarrow x=1\)(TM)
Vậy ......
\(A=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{z-3}}{z}\)
Áp dụng BĐT AM-GM ta có:
\(A\le\frac{1+x-1}{x}+\frac{2+y-2}{2y}+\frac{3+z-3}{3z}=1+\frac{1}{2}+\frac{1}{3}=\frac{11}{6}\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}=1\\\sqrt{y-2}=2\\\sqrt{z-3}=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x-1=1\\y-2=2\\z-3=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=4\\z=6\end{cases}}\)
Vậy \(A_{max}=\frac{11}{6}\Leftrightarrow\hept{\begin{cases}x=2\\y=4\\z=6\end{cases}}\)
Xin lỗi bạn. Bài đó mk lm sai rồi.
Sửa:
Áp dụng BĐT AM-GM ta có:
\(A=\frac{1.\sqrt{x-1}}{x}+\frac{\sqrt{2}.\sqrt{y-2}}{\sqrt{2}.y}+\frac{\sqrt{3}.\sqrt{z-3}}{\sqrt{3}.z}\le\frac{\frac{1+x-1}{2}}{x}+\frac{\frac{2+y-2}{2}}{\sqrt{2}.y}+\frac{\frac{3+z-3}{2}}{\sqrt{3}.z}=\frac{1}{2}+\frac{1}{2.\sqrt{2}}+\frac{1}{2.\sqrt{3}}\)\(=\frac{\sqrt{6}+\sqrt{3}+\sqrt{2}}{2.\sqrt{6}}\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}=1\\\sqrt{y-2}=\sqrt{2}\\\sqrt{z-3}=\sqrt{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}x-1=1\\y-2=2\\z-3=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=4\\z=6\end{cases}}\)
Vậy \(A_{max}=\frac{\sqrt{6}+\sqrt{2}+\sqrt{3}}{2.\sqrt{6}}\)\(\Leftrightarrow\hept{\begin{cases}x=2\\y=4\\z=6\end{cases}}\)
a) Ta có: \(3\sqrt{2}+4\sqrt{8}-\sqrt{18}\)
\(=\sqrt{2}\left(3+4\cdot2-3\right)\)
\(=8\sqrt{2}\)
b) Ta có: \(\sqrt{3}-\frac{1}{3}\sqrt{27}+2\sqrt{507}\)
\(=\sqrt{3}\left(1-\frac{1}{3}\cdot\sqrt{9}+2\cdot\sqrt{169}\right)\)
\(=\sqrt{3}\left(1-1+26\right)\)
\(=26\sqrt{3}\)
c) Ta có: \(\sqrt{25a}+\sqrt{49a}-\sqrt{64a}\)
\(=\sqrt{25}\cdot\sqrt{a}+\sqrt{49}\cdot\sqrt{a}-\sqrt{64}\cdot\sqrt{a}\)
\(=\sqrt{a}\left(5+7-8\right)\)
\(=4\sqrt{a}\)
d) Ta có: \(-\sqrt{36b}-\frac{1}{3}\sqrt{54b}+\frac{1}{5}\sqrt{150b}\)
\(=-\sqrt{6b}\cdot\sqrt{6}-\frac{1}{3}\cdot\sqrt{6b}\cdot\sqrt{9}+\frac{1}{5}\cdot\sqrt{6b}\cdot\sqrt{25}\)
\(=-\sqrt{6b}\left(\sqrt{6}+1-1\right)\)
\(=-\sqrt{6b}\cdot\sqrt{6}=-6\sqrt{b}\)
CHỨNG MINH :
Đặt \(x=\sqrt{a-1},x\ge0\)Ta có ; \(a=x^2+1\)
\(\Rightarrow a-3\sqrt{a-1}+2=\left(x^2+1\right)-3x+2=x^2-3x+3=\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}\right)+3-\frac{9}{4}=\left(x-\frac{3}{2}\right)^2+\frac{3}{4}>0\)với mọi x.
Vậy \(a-3\sqrt{a-1}+2>0\left(a\ge1\right)\)(ddpcm)
TÍNH : Mình nghĩ đề bài bị sai, để mình sửa lại nhé ^^
Đề bài : Tính \(\left(1-\sqrt{1990}\right)\left(\sqrt{1991+2\sqrt{1990}}\right)\)
Ta có : \(\left(1-\sqrt{1990}\right)\left(\sqrt{1991+2\sqrt{1990}}\right)=\left(1-\sqrt{1990}\right)\left(\sqrt{1990+2\sqrt{1990}+1}\right)=\left(1-\sqrt{1990}\right)\left(\sqrt{\left(\sqrt{1990}+1\right)^2}\right)=\left(1-\sqrt{1990}\right)\left(1+\sqrt{1990}\right)=1^2-\left(\sqrt{1990}\right)^2=1-1990=-1989\)