K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2023

Bạn xem lại đề xem chứ mình thay \(n=3,4,5,6\) đều không thỏa.

Để chứng minh rằng tích ab chia hết cho 6, ta cần chứng minh rằng một trong hai số a hoặc b chia hết cho 2 và một trong hai số a hoặc b chia hết cho 3.

Giả sử a chia hết cho 2, khi đó a có thể là 2, 4, 6 hoặc 8. Ta sẽ xét từng trường hợp:

  1. Nếu a = 2, thì n = 10a + b = 20 + b. Vì n > 3, nên b > 0. Khi đó, tích ab = 2b chia hết cho 2.

  2. Nếu a = 4, thì n = 10a + b = 40 + b. Vì n > 3, nên b > -37. Khi đó, tích ab = 4b chia hết cho 2.

  3. Nếu a = 6, thì n = 10a + b = 60 + b. Vì n > 3, nên b > -57. Khi đó, tích ab = 6b chia hết cho 2.

  4. Nếu a = 8, thì n = 10a + b = 80 + b. Vì n > 3, nên b > -77. Khi đó, tích ab = 8b chia hết cho 2.

Ta đã chứng minh được rằng nếu a chia hết cho 2, thì tích ab chia hết cho 2.

Tiếp theo, ta chứng minh rằng một trong hai số a hoặc b chia hết cho 3. Ta có thể sử dụng phương pháp tương tự như trên để chứng minh điều này.

Vì tích ab chia hết cho cả 2 và 3, nên tích ab chia hết cho 6.

Vậy, ta đã chứng minh được rằng nếu n = 10a + b (a, b  N, 0 < a < 10), thì tích ab chia hết cho 6.

10 tháng 12 2023

Rảnh à?

 

5 tháng 4 2017

1)

a)251-1

=(23)17-1\(⋮\)23-1=7

Vậy 251-1\(⋮\)7

b)270+370

=(22)35+(32)35\(⋮\)22+32=13

Vậy 270+370\(⋮\)13

c)1719+1917

=(BS18-1)19+(BS18+1)17

=BS18-1+BS18+1

=BS18\(⋮\)18

d)3663-1\(⋮\)35\(⋮\)7

Vậy 3663-1\(⋮\)7

3663-1

=3663+1-2

=BS37-2\(⋮̸\)37

Vậy 3663-1\(⋮̸\)37

e)24n-1

=(24)n-1\(⋮\)24-1=15

Vậy 24n-1\(⋮\)15

13 tháng 8 2019

BS là gì vậy bạn???

21 tháng 10 2016

Ta có :

\(A=3^{4\left(n+1\right)}-4^{3\left(n+1\right)}=81^{n+1}-64^{n+1}\)

\(=\left(81-64\right)\left(81^n+81^{n-1}.64+...+81.64^{n-1}+64^n\right)\)

\(=17\left(81^n+81^{n-1}.64+...+81.64^{n-1}+64^n\right)\)chia hết cho 17

Vậy ...

3 tháng 10 2021

Giả sử \(\hept{\begin{cases}a⋮p\\b⋮̸p\end{cases}}\Rightarrow\hept{\begin{cases}a^2⋮p\\b^2⋮̸p\end{cases}}\)

=> \(\hept{\begin{cases}a^2:p\text{ dư }4k;4k+1;4k+2\\b^2:p\text{ dư }4k;4k+1;4k+2\end{cases}}\)

Chọn ngẫu nhiên các cặp a2 ; b2 bất kì nhận thấy 

 a2 + b2 \(⋮̸\)p (trái với giả thiết) 

=> Điều giả sử là sai => đpcm 

21 tháng 8 2017

a) ta có : \(35^{2005}-35^{2004}=35^{2004}\left(35-1\right)=35^{2004}.34=35^{2004}.2.17⋮17\)

\(\Rightarrow35^{2005}-35^{2004}\) chia hết cho \(17\) (đpcm)

b) ta có : \(27^3+9^5=\left(3^3\right)^3+\left(3^2\right)^5=3^9+3^{10}=3^9\left(1+3\right)=3^9.4⋮4\)

vậy \(27^3+9^5\) chia hết cho \(4\) (đpcm)

21 tháng 8 2017

Cho mình hỏi thêm là tại sao 35^2004 lại thành (35-1) và 3^10 lại thành (1+3) . Mình học không giỏi nên không biết . Mong bạn chỉ

phần a sai đề nha bạn 

b,Ta có

      \(2\equiv2\left(mod13\right)\)

\(\Rightarrow2^{12}\equiv1\left(mod13\right)\)

\(\Rightarrow2^{12.5}.2^{10}\equiv1.2^{10}\left(mod13\right)\)

\(\Rightarrow2^{60}.2^{10}\equiv1024\left(mod13\right)\)

\(\Rightarrow2^{70}\equiv10\left(mod13\right)\)\(\left(1\right)\)

Lại có:

\(3\equiv3\left(mod13\right)\)

\(\Rightarrow3^6\equiv1\left(mod13\right)\)

\(\Rightarrow3^{6.11}.3^4\equiv1.3^4\left(mod13\right)\)

\(\Rightarrow3^{66}.3^4\equiv81\left(mod13\right)\)

\(\Rightarrow3^{70}\equiv3\left(mod13\right)\)\(\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow2^{70}+3^{70}\equiv13\equiv0\left(mod13\right)\)

c, Ta có

\(17\equiv-1\left(mod18\right)\)

\(\Rightarrow17^{19}\equiv-1\left(mod18\right)\)\(\left(1\right)\)

Lại có

\(19\equiv1\left(mod18\right)\)

\(\Rightarrow19^{17}\equiv1\left(mod18\right)\)\(\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow17^{19}+19^{17}\equiv0\left(mod18\right)\)

\(\Rightarrow17^{19}+19^{17}⋮18\)