Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2006^{2006}+1}{2006^{2007}+1}\) VÀ \(B=\frac{2006^{2005}+1}{2006^{2006}+1}\)
Ta có: \(A=\frac{2006^{2006}+1}{2006^{2007}+1}< 1\)
Nên \(A=\frac{2006^{2006}+1}{2006^{2007}+1}< \frac{2006^{2006}+1+2005}{2006^{2007}+1+2005}=\frac{2006^{2006}+2006}{2006^{2007}+2006}\)
\(=\frac{2006.\left(2006^{2005}+1\right)}{2006.\left(2006^{2006}+1\right)}\)
\(=\frac{2006^{2005}+1}{2006^{2006+1}}=B\)
Vậy \(A< B\)
Ta có :
\(\left(6^{2007}-6^{2006}\right):6^{2006}=\frac{6^{2007}-6^{2006}}{6^{2006}}=\frac{6^{2006}\left(6-1\right)}{6^{2006}}=6-1=5\)
Chúc bạn học tốt ~
\(\frac{6^{2007}-6^{2006}}{6^{2006}}\)
\(=\frac{6^{2006}\left(6-1\right)}{6^{2006}}\)
\(=6-1\)
\(=5\)
Đặt A = 1 + 2 + 22 + ... + 22006
A = ( 1 + 2 + 22 ) + ( 23 + 24 + 25 ) + ... + ( 22004 + 22005 + 22006 )
A = 7 + 23(1+2+22) + ... + 22004(1+2+22)
A = 7.(23+24+....+22004) chia hết cho 7
1 + 2 + 22 + 23 + ... + 22006
= (1 + 2 + 22) + (23 + 24 + 25) + (26 + 27 + 28) + ... + (22004 + 22005 + 22006)
= (1 + 2 + 22) + 23.(1 + 2 + 22) + 26.(1 + 2 + 22) + ... + 22004.(1 + 2 + 22)
= 7 + 23.7 + 26.7 + ... + 22004.7
= 7.(1 + 23 + 26 + ... + 22004) chia hết cho 7
câu a nhóm 4 số lại(mũ liên tiếp)
câu b nhóm 4 số lại(mũ liên tiếp)
1) (5+54)+(52+55)+...........+(52003+52006)= 5(1+53)+52(1+53)+..............+52003(1+53)
= (5+52+..........+52003).126 ->S chia hết cho 126
2, 7+73+................+71997+71999 = 7(1+72)+..............+71997(1+72)
= (7+...............+71997).50-> chia hết cho 5
= 7(1+72+.......+71998) -> chia hết cho 7
-> chia hết cho 35
1.a)A = (1 - 1/3)(1-2/5)...(1-5/5)....(1-9/5)
=(1-1/3)....0.....(1-9/5)
=0
=>đpcm.
b)ta xét:
1/22 = 1/2x2 < 1/1x2
.............
1/82 = 1/8x8 <1/7x8
=>B < 1/1x2 + 1/2x3 ... + 1 + 1/7x8
<=> B <1 - 1/2 + 1/2 - 1/3 + ... + 1/7 - 1/8
<=> B < 1 - 1/8 = 7/8 < 1
=> B < 1 => đpcm
2.a) Đặt m = 2007(2006+2007) = 2006(2006 + 2007) + (2006+2007)
Đặt n = 2006(2007+2008) = 2006(2006+2007) + (2006 + 2006)
Ta thấy : (2006+2007) > (2006 + 2006) => m > n , áp dụng công thức "a.d > c.d <=> a/b > b/d (a,c thuộc Z// b,d thuộc N)
=> A > B
b)ta có: D = 196 + 197/197 + 198 = (196/197+198) + (197/197+198) < 196/197 + 197/198 = C
=> C > D
c)gọi 2010 là a
ta thấy : (a + 1)(a-3) = (a - 1)(a - 3) + 2(a - 3) < (a - 1)(a - 3) + 2(a - 1) = (a - 1)(a - 1)
áp dụng: ad > bc <=> a/b > c/d ( a,b,c,d thuộc Z// b,d > 0)
=> E > F
A = 2006 + 20062 + 20063 + .... + 200610
A có số số hạng : ( 10 - 1 ) : 1 + 1 = 10 ssh . Ta chia A thành 5 cặp , mỗi cặp có 2 số .
=> A = ( 2006 + 20062 ) + ( 20063 + 20064 ) + .... + ( 20069 + 200610 )
A = 2006 . ( 1 + 2006 ) + 20063 . ( 1 + 2006 ) + .... + 20069 . ( 1 + 2006 )
A = 2006 . 2007 + 20063 . 2007 + ... + 20069 . 2007
A = 2007 . ( 2006 + 20063 + ... + 20069 )
=> A \(⋮\) 2007 ( đpcm )