Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(2^1+2^2)+(2^3+2^4)+.....+(2^99+2^100)
A=(2+2^2)+2^2(2+2^2)+.....+2^98(2+2^2)
A=6+2^2.6+....+2^98.6
A=6+2^2.6+......+2^98.3.2
Vậy A chia hêt cho 3
Bạn xem cách này nhé :
A = 1 . ( 1 .2 .2^2 . 2^3 ) . 2^4 ( 1 . 2 . 2^2 . 2^3 ) ........ 2^97 ( 1 . 2 .2^2 . 2^3 )
A = 1 . 36 .2^4 . 36 ..............2^97 .36
vì 36 chia hết cho 6 suy ra Achia hêt cho 6 ( điều phải chứng minh ) .
\(A=2+2^2+2^3+2^4+2^5+...+2^{99}+2^{100}\)
\(A=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(A=1\left(2+2^2+2^3+2^4+2^5\right)+2^5\left(2+2^2+2^3+2^4+2^5\right)+...+2^{95}\left(2+2^2+2^3+2^4+2^5\right)\)
\(A=\left(2+2^2+2^3+2^4+2^5\right)\left(1+2^5+...+2^{95}\right)\)
\(A=62\left(1+2^5+...+2^{95}\right)⋮62\left(đpcm\right)\)
Ta có :
A = 2 + 22 + 23 + 24 + ... + 299 + 2100
A = (2 + 22) + (23 + 24) + ... + (299 + 2100)
A = 2 . (1 + 2) + 23 . (1 + 2) + ... + 299 . (1 + 2)
A = 2 . 3 + 23 . 3 + ... + 299 . 3
A = 3 . (2 + 23 + ... + 299) chia hết cho 3
=> A chia hết cho 3 (ĐPCM)
Ủng hộ mk nha !!! ^_^
A=2+ 22+ 23+ 24 + ...+ 299+2100
A=(2+ 22+ 23+ 24 )+ .+(297+298 299+2100)
A=(2+ 22+ 23+ 24 )+ .+296(2+ 22+ 23+ 24)
A=30+...+296.30 chia hết cho 3
A=1+2+22+23+24+........+299
2A=2.(1+2+22+23+24+........+299)
2A=2+22+23+24+........+2100
2A-A=(2+22+23+24+........+2100)-(1+2+22+23+24+........+299)
A=2100-1
A+1=2100-1+1
A+1=2100
Ta có A=2+22+23+24+....+299
=>A=(2+22+23)+(24+25+26)+...+(297+298+299)
=>A=(2+22+23)+23(2+22+23)+....+296(2+22+23)
=>A=14+23.14+....+296.14
=>A=14(23+26+...+296) ⋮ 14
=>A⋮14