K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2018

a ) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}\)

Vi \(1-\frac{1}{50}< 1\)

=> \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}< 1\)

b ) Dat B = \(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2013^2}\)

Ta co :

  \(\frac{1}{5^2}< \frac{1}{4.5}=\frac{1}{4}-\frac{1}{5}\)

\(\frac{1}{6^2}< \frac{1}{5.6}=\frac{1}{5}-\frac{1}{6}\)

\(\frac{1}{7^2}< \frac{1}{6.7}=\frac{1}{6}-\frac{1}{7}\)

...

\(\frac{1}{2013^2}< \frac{1}{2012.2013}=\frac{1}{2012}-\frac{1}{2013}\)

Vay \(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2013^2}< \frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{2012}-\frac{1}{2013}\)

=> B < \(\frac{1}{4}-\frac{1}{2013}\)

Ma \(\frac{1}{4}-\frac{1}{2013}< \frac{1}{4}\)

=> B < \(\frac{1}{4}\)

KL : \(Vay\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2013^2}< \frac{1}{4}\)

11 tháng 4 2018

\(a)\) Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\) ta có : 

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}=\frac{99}{100}< 1\)

Vậy \(A< 1\)

Chúc bạn học tốt ~ 

9 tháng 3 2017

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}< 1\) (đpcm)

9 tháng 3 2017

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}\)

\(=\frac{49}{50}\)

\(\Rightarrow\) Quy đồng phân số và 1 là : \(\frac{49}{50}\) và \(1\)

Giữ nguyên phân số \(\frac{49}{50}\)

Ta có : \(\frac{1}{1}=\frac{1.50}{1.50}=\frac{50}{50}\)

\(\Rightarrow\frac{49}{50}< \frac{50}{50}\left(đpcm\right)\)

24 tháng 6 2019

A= \(\frac{1}{2}\) + \(\frac{1}{2^2}\) + \(\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}\)

\(\Rightarrow\) 2A = 1 + \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}\)

\(\Rightarrow\) 2A - A = ( \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{100}}\) ) -

( \(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}\))

\(\Rightarrow\) A = 1 - \(\frac{1}{2^{100}}\) < 1

Vậy: A < 1
\(\frac{1}{2}\)

24 tháng 6 2019

B= \(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{99.100}\)

= 2. \(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)

= 2. ( \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\) )

= 2. \(\left(\frac{1}{1}-\frac{1}{100}\right)\) = \(\frac{99}{50}\)

\(\Rightarrow\) B = \(\frac{99}{50}\) < \(\frac{100}{50}\) = 2

Vậy: B < 2

30 tháng 4 2015

Ta có : \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{50}\)

\(=1-\frac{1}{50}=\frac{49}{50}\)

Vì \(\frac{49}{50}<1\)

Nên \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}<1\)

8 tháng 4 2017

\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}< 1\)

Ta có: \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}< 1\)

=\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}< 1\)

= \(\dfrac{1}{1}-\dfrac{1}{50}< 1\)

= \(\dfrac{50}{50}+\dfrac{-1}{50}< 1\)

= \(\dfrac{49}{50}< 1\)

Vậy \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}< 1\)

8 tháng 4 2017

1/1.2 = 2 đã lớn hơn 1 rồi @@

16 tháng 3 2016

Chứng tỏ rằng :

a) 1 phần 1.2 + 1 phần 2.3 + 1 phần 3.4+.....+1 phần 49.50 <1

b)1 phần 22 + 1 phần 32 + 1 phần 42+.....+1 phần 20082 + 1 phần 20092 <1

Toán lớp 6

ai tích mình tích lại 

2 tháng 5 2015

Câu a: Không hỏi nên không trả lời

Câu b:Gọi d là ƯCLN của n và n+1

Ta có: n chia hết cho d

n+1 chia hết cho d

=>(n+1)-n chia hết cho d

=>1 chia hết cho d

=>d=1

Vậy phân số n/n+1 là phân số tối giản

Câu c: \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

=\(1-\frac{1}{50}\)

Vì: \(1-\frac{1}{50}\)<\(1\)

Vậy:\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)<\(1\)


 

x + 25 = 64

x         = 64 - 25

x         = 39

Vậy x = 39