K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2019

\(A=1+4+4^2...+4^{59}\)

\(=\left(1+4+4^2\right)+\left(4^3+4^5+4^6\right)+...+\left(4^{57}+4^{58}+4^{59}\right)\)

\(=21+4^3\cdot21+....+4^{57}\cdot21\)

\(=21\left(1+4^3+4^6+...+4^{57}\right)⋮21\)

\(\Leftrightarrow A⋮21\)

Hok tốt

23 tháng 12 2019

\(A = 1 + 4 + 4^2 + ... + 4\)\(57\) \(+ 4\)\(58\) \(+ 4\)\(59\)

\(A = ( 1 + 4 + 4^2 ) + ... + ( 4\)\(57\) \(+ 4\)\(58\) \(+ 4\)\(59\)\()\)

\(A = 21 + ... + 4\)\(57\)\(. ( 1 + 4 + 4^2 )\)

\(A = 21 + ... + 4\)\(57\) \(.21\)

\(A = 21 . ( 1 + ... + 4\)\(57\)\()\)\(⋮\)\(21\)

\(Vậy : A \)\(⋮\)\(21\)

19 tháng 9 2017

a1. A = \(1+4+4^2+4^3+...+4^{58}+4^{59}\)

A = \(\left(1+4\right)+4^2\left(1+4\right)+...+4^{58}\left(1+4\right)\)

A = \(5+4^2.5+...+4^{58}.5\)

A = \(5\left(1+4^2+...+4^{58}\right)⋮5\)

a2. A = \(1+4+4^2+4^3+...+4^{58}+4^{59}\)

A = \(\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{57}+4^{58}+4^{59}\right)\)

A = \(\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{57}\left(1+4+4^2\right)\)

A = \(\left(1+4+4^2\right)\left(1+4^3+...+4^{57}\right)\)

A = \(21.\left(1+4^3+...+4^{57}\right)⋮21\)

a3. A = \(1+4+4^2+4^3+...+4^{58}+4^{59}\)

A = \(\left(1+4+4^2+4^3\right)+\left(4^4+4^5+4^6+4^7\right)+...+\left(4^{56}+4^{57}+4^{58}+4^{59}\right)\)

A = \(\left(1+4+4^2+4^3\right)+4^4\left(1+4+4^2+4^3\right)+...+4^{56}\left(1+4+4^2+4^3\right)\)

A = \(\left(1+4+4^2+4^3\right)\left(1+4^4+...+4^{56}\right)\)

A = \(85.\left(1+4^4+...+4^{56}\right)⋮85\)

Câu B sao thứ tự số mũ chẳng có quy luật vậy, sao mà làm được :v

19 tháng 9 2017

mình đặt tên cho dễ

A=1 + 4 + 4^2 + ..... + 4 ^59 \(⋮5\)

A=(1+4)+4^2(1+4)+.....+4^58(1+4)

A=5+4^2.5+....4^58.5

A=5.(1+4^2+....+4^58) => đcpm

B=1 + 4 + 4^2 + ..... + 4 ^59 \(⋮21\)

B=(1+4+4^2)+.........+(4^57+4^58+4^59)

B= (1+4+4^2)+4^3(1+4+4^2)+.....+4^47(1+4+4^2

B=(1+4+4^2)+1+4^3+.....+4^57)

B=21.(1+4^3+.....+4^57)\(⋮21\Rightarrowđcpm\)

9 tháng 10 2016

A=4+42+43+44+...+459+460

A=(4+42)+(43+44)+...+(459+460)

A=4.(1+4)+43.(1+4)+...+459.(1+4)

A=4.5+43.5+...+459.5

A=5.(4+43+...+559) chia hết cho 5 (đpcm)

A=4+42+43+...+459+460

A=(4+42+43)+...+(458+459+460)

A=4.(1+4+42)+...+458.(1+4+42)

A=4.21+...+458.21

A=21.(4+...+458) chia hết cho 21 (đpcm)

9 tháng 10 2016

ta có   4(1+4)+43(1+4)+.....+459(1+4)

        =4.5+43.5+.....+459.5

        =5(4+43+....+459)     chia het cho 5

chia het cho 21 chứng minh tương tự nhóm 3 hạng tử đầu tiên

8 tháng 10 2016

A=41+42+43+44+...+459+460

=(41+42)+(43+44)+...+(459+460)

=41(1+4)+43(1+4)+...+459(1+4)

=41*5+43*5+...+459*5

=5(41+43+...+459) chia hết 5

A=41+42+43+44+...+459+460

=(41+42+43)+...+(458+459+460)

=41(1+4+42)+...+458(1+4+42)

=41*21+...+458*21

=21*(41+...+458) chia hết 21

 

 

9 tháng 10 2016

\(A=\left(4^1+4^2+4^3+4^4+...+4^{59}+4^{60}\right)\)

\(=4\left(1+4\right)+...+4^{59}\left(1+4\right)\)

\(=5\left(4+...+4^{59}\right)⋮5\)

\(A=4^1+4^2+4^3+4^4+..+4^{59}+4^{60}\)

\(=4\left(1+4+4^2\right)+...+4^{58}\left(1+4+4^2\right)\)

\(\Leftrightarrow21\left(4+...+4^{58}\right)⋮21\)

=>đpcm

6 tháng 10 2018

A=1+4+42+43+44+...+458+459

A=(1+4)+(42+43)+...+(458+459)

A=1(1+4)+42(1+4)+44(1+4)+...+458(1+4)

A=1.5+42.5+44.5+...+458.5

A=(1+42+44+...+458)5

Vậy A chia hết cho 5

Bài trên mình gom hai số liền kề nhau vào 1 nhóm.

Bài tiếp theo bạn gom 3 số vào một nhóm va làm tương tự như bài trên.Bài tiếp theo nữa bạn gom 4 số vào 1 nhóm và lảm tương tự như bài trên

29 tháng 10 2018

Chia hết cho 5

(1+4)+(4^2+4^3)+...+(4^58+4^59)

=5+4^2(1+4)+...+4^58(1+4)

=5+4^2.5+...+4^58.5

=5(1+4^2+...+4^58)chia hết cho 5

Chia hết cho 21;85 làm tương tự 

Chia hết cho 21 nhóm 3 số nhé

Chia hết cho 85 nhóm 4 số nhé 

6 tháng 7 2018

❤ѕѕѕσиɢσкυѕѕѕ❤

6 tháng 7 2018

Bớt xàm đi ông

25 tháng 10 2018

\(1+4+4^2+4^3+...+4^{58}+4^{59}\)

\(=\left(1+4\right)+\left(4^2+4^3\right)+...+\left(4^{58}+4^{59}\right)\)

\(=5+\left(4^2.1+4^2.4\right)+....+\left(4^{58}.1+4^{58}.4\right)\)

\(=5+4^2.\left(1+4\right)+...+4^{58}.\left(1+4\right)\)

\(=1.5+4^2.5+....+4^{58}.5\)

\(=\left(1+4^2+...+4^{58}\right).5⋮5\)