Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2-6x+10
=(x^2-6x+9)+1
=(x-3)^2+1
vì (x-3)^2>=0 với mọi x nên (x-3)^2+1>0
Hay x^2-6x+10>0
a. \(x^2+3x+5\)
\(=x^2+2.x^2.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{11}{4}\)
\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)
=> đpcm
a) Đề sai thì phải.Phải là CM: \(x^2-x+1>0\) với mọi x
Ta có:
\(x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\) nên \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
Vậy \(x^2-x+1>0\) với mọi \(x\in R\)
b)Ta có:
\(-x^2+2x-4=-\left(x^2-2x+1\right)-3\)
\(=-\left(x-1\right)^2-3\)
Vì \(-\left(x-1\right)^2\le0\) với mọi x nên \(-\left(x-1\right)^2-3< 0\)
Vậy \(-x^2+2x-4< 0\) với mọi \(x\in R\)
Ta có : x2 - 2xy + y2 + 1 = (x - y)2 + 1
Vì : \(\left(x-y\right)^2\ge0\forall x\in R\)
Nên : \(\left(x-y\right)^2+1\ge1\forall x\in R\)
Suy ra : \(\left(x-y\right)^2+1>0\forall x\in R\)
Vậy x2 - 2xy + y2 + 1 \(>0\forall x\in R\)
Ta có : x - x2 - 1
= -(x2 - x + 1)
\(=-\left(x^2-x+\frac{1}{4}+\frac{3}{4}\right)\)
\(=-\left(x^2-x+\frac{1}{4}\right)-\frac{3}{4}\)
\(=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\)
Vì : \(-\left(x-\frac{1}{2}\right)^2\le0\forall x\in R\)
Nên : \(-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\le-\frac{3}{4}< 0\)
Vậy x - x2 - 1 \(< 0\forall x\in R\)
Bài 1:
a) \(ay-ax-2x+2y\)
\(=-a\left(x-y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(-a-2\right)\)
b) \(5ax-7by-7ay+5bx\)
\(=5x\left(a+b\right)-7y\left(a+b\right)\)
\(=\left(a+b\right)\left(5x-7y\right)\)
c) \(4x^2-9x+5\)
\(=4x^2-4x-5x+5\)
\(=4x\left(x-1\right)-5\left(x-1\right)\)
\(=\left(x-1\right)\left(4x-5\right)\)
d) \(x^2-8x+15\)
\(=x^2-3x-5x+15\)
\(=x\left(x-3\right)-5\left(x-3\right)\)
\(=\left(x-3\right)\left(x-5\right)\)
Bài 2:
a) \(x^2+x+\frac{1}{2}\)
\(=x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{1}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{1}{4}>0\forall x\)
b) \(x^2+5x+7\)
\(=x^2+2\cdot x\cdot\frac{5}{2}+\frac{25}{4}+\frac{3}{4}\)
\(=\left(x+\frac{5}{2}\right)^2+\frac{3}{4}>0\forall x\)
c) \(2x^2-3x+9\)
\(=2\left(x^2-\frac{3}{2}x+\frac{9}{2}\right)\)
\(=2\left(x^2-2\cdot x\cdot\frac{3}{4}+\frac{9}{16}+\frac{63}{16}\right)\)
\(=2\left[\left(x-\frac{3}{4}\right)^2+\frac{63}{16}\right]\)
\(=2\left(x-\frac{3}{4}\right)^2+\frac{63}{8}>0\forall x\)
-3x^2+9x-12
=-3(x^2-3x+4)
=-3(x^2-3x+9/4+7/4)
=-3(x-3/2)^2-21/4<0