\(9n+2\) và \(12n+3\) là hai số nguyên tố cùng nh...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2023

Gọi d là ước của 9n+2 và 12n+3 nên

\(9n+2⋮d\Rightarrow4\left(9n+2\right)=36n+8⋮d\)

\(12n+3⋮d\Rightarrow3\left(12n+3\right)=36n+9⋮d\)

\(\Rightarrow36n+9-\left(36n+9\right)=1⋮d\Rightarrow d=1\)

=> 9n+2 và 12n+3 là 2 số nguyên tố cùng nhau

 

27 tháng 7 2023

Gọi d là ƯC(9n + 2; 12n + 3)

⇒ 9n + 2 ⋮ d ⇒ 36n + 8 ⋮ d

12n + 3 ⋮ d ⇒ 36n + 9 ⋮ d

⇒ (36n + 9) - (36n - 8) ⋮ d

⇒ 1 ⋮ d

⇒ d = 1

Vậy 9n + 2 và 12n + 3 là hai số nguyên tố cùng nhau

+)Gọi d là ƯCLN(n,22n+1)

\(\Rightarrow n⋮d;22n+1⋮d\)

\(n⋮d\)

\(\Rightarrow22n⋮d\)(1)

\(22n+1⋮d\)(2)

+)Từ (1) và (2)

\(\Rightarrow22n+1-22n⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d\inƯ\left(1\right)=1\)

=>d=1

\(\RightarrowƯCLN\left(n,22n+1\right)=1\)

=>n và 22n+1 nguyên tố cùng nhau với mọi n nguyên dương

Chúc bn học tốt

7 tháng 2 2017

Đặt \(M=2+2\sqrt{12n^2+1}\)

Để M là số nguyên thì 12n2 + 1  là số chính phương lẻ 
Đặt 12n2 + 1 = (2k -1)2   (k \(\in\) N)

<=> 12n2 + 1 = 4k- 4k +1

<=> 12n2 = 4k2 - 4k 

<=> 3n2 = k(k - 1)

=> k(k - 1) chia hết cho 3 => k chia hết cho 3 hoặc k - 1 chia hết cho 3

TH1 : k ⋮ 3 => n=(\(\frac{k}{3}\)).(k - 1)     Mà (\(\frac{k}{3}\) ; k-1 )= 1 nên đặt \(\frac{k}{3}\) = x2 => k = 3x2

  và đặt k - 1 = y=> k = y2 +1

  => 3x= y2 + 1 = 2 ( mod 3)

  Vô lý vì 1 số chính phương chia cho 3 có số dư là 0 hoặc 1

TH2 : k - 1 ⋮ 3: ta có :

  => n2 = \(\frac{k\left(k-1\right)}{3}\)     Mà ( k; (\(\frac{k-1}{3}\)) =1 nên đặt k = z2 

=> M = 2 + 2(2k - 1) = 4k = 4z2 =(2z)2 là 1 số chính phương 

 => M là một số chính phương ( đpcm )

28 tháng 4 2017

\(2+2\sqrt{12n^2+1}\in Z^+\Rightarrow2\sqrt{12n^2+1}\in Z^+\Rightarrow\sqrt{12n^2+1}\in Q\)

\(\Rightarrow\sqrt{12n^2+1}=m\in Z^+\Rightarrow12n^2=m^2-1⋮4\Rightarrow m=2k+1,k\in Z\)

\(12n^2=\left(2k+1\right)^2-1=4k\left(k+1\right)\Rightarrow3n^2=k\left(k+1\right)⋮3\)hoặc \(k+1⋮3\)

TH1: \(k=3q,q\in Z\Rightarrow3n^2=3q\left(q+1\right)\Rightarrow n^2=q\left(q+1\right)\)

Vì \(\left(q,3q+1\right)=1\Rightarrow\hept{\begin{cases}q=a^2\\3q+1=b^2\end{cases}\Rightarrow3q^2+1=b^2}\)

Ta có: \(2+2\sqrt{12n^2+1}=2+2m=2+2\left(2k+1\right)=4+4.3q=4+12q^2=4b^2\)(CMT)

Ta có đpcm

TH2(tương tự):\(k=3q+1\)

20 tháng 10 2019

CHÚ Ý!!! : Vì \(n\inℕ\)nên\(n^2+9n+20\)phải lớn hơn 20, suy ra nếu có thể, số nguyên tố này phải là số lẻ

Nếu \(n⋮2\)thì: \(\hept{\begin{cases}n^2⋮2\\9n⋮2\\20⋮2\end{cases}}\Rightarrow\left(n^2+9n+20\right)⋮2\)=> Ko thể là số nguyên tố.

Nếu n là số lẻ(Cách viết khác khi n là số lẻ)thì: n^2 là số lẻ, 9n cũng là số lẻ, 20 là số chẵn ==> \(\left(n^2+9n+20\right)⋮2\)==>Ko thể là số nguyên tố.

Vậy ko có trường hợp n nào thỏa mãn (n^2 + 9n + 20) là số nguyên tố ạ

a)Ta có : \(12n^2-5n-25\)

\(=\left(4n+5\right)\left(3n-5\right)\)

Vì \(12n^2-5n-25\)là số nguyên tố

\(\Rightarrow\)Nó chỉ có 2 ước nguyên dương là 1 và chính nó

mà \(4n+5>3n-5\forall n\inℕ\)

\(\Rightarrow3n-5=1\)

\(\Rightarrow n=2\)

Thử lại : \(\left(2.4+5\right)\left(2.3-1\right)=13\)(là số nguyên tố)

Vậy \(n=2\)

b)Tương tự nhé cậu , ta tìm được \(n=0\)