Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+)Gọi d là ƯCLN(n,22n+1)
\(\Rightarrow n⋮d;22n+1⋮d\)
\(n⋮d\)
\(\Rightarrow22n⋮d\)(1)
\(22n+1⋮d\)(2)
+)Từ (1) và (2)
\(\Rightarrow22n+1-22n⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)=1\)
=>d=1
\(\RightarrowƯCLN\left(n,22n+1\right)=1\)
=>n và 22n+1 nguyên tố cùng nhau với mọi n nguyên dương
Chúc bn học tốt
Đặt \(M=2+2\sqrt{12n^2+1}\)
Để M là số nguyên thì 12n2 + 1 là số chính phương lẻ
Đặt 12n2 + 1 = (2k -1)2 (k \(\in\) N)
<=> 12n2 + 1 = 4k2 - 4k +1
<=> 12n2 = 4k2 - 4k
<=> 3n2 = k(k - 1)
=> k(k - 1) chia hết cho 3 => k chia hết cho 3 hoặc k - 1 chia hết cho 3
TH1 : k ⋮ 3 => n2 =(\(\frac{k}{3}\)).(k - 1) Mà (\(\frac{k}{3}\) ; k-1 )= 1 nên đặt \(\frac{k}{3}\) = x2 => k = 3x2
và đặt k - 1 = y2 => k = y2 +1
=> 3x2 = y2 + 1 = 2 ( mod 3)
Vô lý vì 1 số chính phương chia cho 3 có số dư là 0 hoặc 1
TH2 : k - 1 ⋮ 3: ta có :
=> n2 = \(\frac{k\left(k-1\right)}{3}\) Mà ( k; (\(\frac{k-1}{3}\)) =1 nên đặt k = z2
=> M = 2 + 2(2k - 1) = 4k = 4z2 =(2z)2 là 1 số chính phương
=> M là một số chính phương ( đpcm )
\(2+2\sqrt{12n^2+1}\in Z^+\Rightarrow2\sqrt{12n^2+1}\in Z^+\Rightarrow\sqrt{12n^2+1}\in Q\)
\(\Rightarrow\sqrt{12n^2+1}=m\in Z^+\Rightarrow12n^2=m^2-1⋮4\Rightarrow m=2k+1,k\in Z\)
\(12n^2=\left(2k+1\right)^2-1=4k\left(k+1\right)\Rightarrow3n^2=k\left(k+1\right)⋮3\)hoặc \(k+1⋮3\)
TH1: \(k=3q,q\in Z\Rightarrow3n^2=3q\left(q+1\right)\Rightarrow n^2=q\left(q+1\right)\)
Vì \(\left(q,3q+1\right)=1\Rightarrow\hept{\begin{cases}q=a^2\\3q+1=b^2\end{cases}\Rightarrow3q^2+1=b^2}\)
Ta có: \(2+2\sqrt{12n^2+1}=2+2m=2+2\left(2k+1\right)=4+4.3q=4+12q^2=4b^2\)(CMT)
Ta có đpcm
TH2(tương tự):\(k=3q+1\)
CHÚ Ý!!! : Vì \(n\inℕ\)nên\(n^2+9n+20\)phải lớn hơn 20, suy ra nếu có thể, số nguyên tố này phải là số lẻ
Nếu \(n⋮2\)thì: \(\hept{\begin{cases}n^2⋮2\\9n⋮2\\20⋮2\end{cases}}\Rightarrow\left(n^2+9n+20\right)⋮2\)=> Ko thể là số nguyên tố.
Nếu n là số lẻ(Cách viết khác khi n là số lẻ)thì: n^2 là số lẻ, 9n cũng là số lẻ, 20 là số chẵn ==> \(\left(n^2+9n+20\right)⋮2\)==>Ko thể là số nguyên tố.
Vậy ko có trường hợp n nào thỏa mãn (n^2 + 9n + 20) là số nguyên tố ạ
a)Ta có : \(12n^2-5n-25\)
\(=\left(4n+5\right)\left(3n-5\right)\)
Vì \(12n^2-5n-25\)là số nguyên tố
\(\Rightarrow\)Nó chỉ có 2 ước nguyên dương là 1 và chính nó
mà \(4n+5>3n-5\forall n\inℕ\)
\(\Rightarrow3n-5=1\)
\(\Rightarrow n=2\)
Thử lại : \(\left(2.4+5\right)\left(2.3-1\right)=13\)(là số nguyên tố)
Vậy \(n=2\)
b)Tương tự nhé cậu , ta tìm được \(n=0\)
Gọi d là ước của 9n+2 và 12n+3 nên
\(9n+2⋮d\Rightarrow4\left(9n+2\right)=36n+8⋮d\)
\(12n+3⋮d\Rightarrow3\left(12n+3\right)=36n+9⋮d\)
\(\Rightarrow36n+9-\left(36n+9\right)=1⋮d\Rightarrow d=1\)
=> 9n+2 và 12n+3 là 2 số nguyên tố cùng nhau
Gọi d là ƯC(9n + 2; 12n + 3)
⇒ 9n + 2 ⋮ d ⇒ 36n + 8 ⋮ d
12n + 3 ⋮ d ⇒ 36n + 9 ⋮ d
⇒ (36n + 9) - (36n - 8) ⋮ d
⇒ 1 ⋮ d
⇒ d = 1
Vậy 9n + 2 và 12n + 3 là hai số nguyên tố cùng nhau