\(9^{2^{1930}}\equiv2^{2^{1930}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 3 2020

\(cosA=\frac{AB^2+AC^2-BC^2}{2AB.AC}=\frac{a^2+b^2+a^2+c^2-b^2-c^2}{2AB.AC}=\frac{a^2}{AB.AC}>0\)

\(\Rightarrow A< 90^0\)

Tương tự ta có: \(cosB=\frac{b^2}{AB.BC}>0\Rightarrow B< 90^0\)

\(cosC=\frac{c^2}{AC.BC}>0\Rightarrow C< 90^0\)

\(\Rightarrow\Delta ABC\) là tam giác nhọn

11 tháng 9 2020

Dễ mà

\(9^{\frac{1}{2}}=\sqrt{9}=3\)

11 tháng 9 2020

Ta có: \(9^{\frac{1}{2}}=\left(3^2\right)^{\frac{1}{2}}=3^{2.\frac{1}{2}}=3^1=3\)( đpcm )

6 tháng 4 2016

Giả sử \(x\le y\le z\) do \(xyz\le0\) nên\(x\le0\)

Do \(x^2+y^2+z^2=9\Rightarrow x^2\le9\Rightarrow x\in\left[-3;0\right]\)

Ta có \(yz\le\left(\frac{y+z}{2}\right)^2\le\frac{y^2+z^2}{2}\)

Do đó : \(2\left(x+y+z\right)-xyz=2x+2\left(y+z\right)-xyz\le2x+2\sqrt{2\left(y^2+z^2\right)}-x.\frac{y^2+z^2}{2}\)

           \(=2x+2\sqrt{2\left(9-x^2\right)}-\frac{x\left(9-x^2\right)}{2}=\frac{x^3}{2}-\frac{5x}{2}+2\sqrt{2\left(9-x^2\right)}\)

Xét hàm số :

\(f\left(x\right)=\frac{x^3}{2}-\frac{5x}{2}=2\sqrt{2\left(9-x^2\right)}\) với \(x\in\left[-3;0\right]\) \(\Rightarrow f'\left(x\right)=\frac{3x^2}{2}-\frac{5}{2}-\frac{2\sqrt{2}x}{\sqrt{9-x^2}}\)

Xét \(f'\left(x\right)=0\Leftrightarrow\frac{3x^2}{2}-\frac{5}{2}-\frac{2\sqrt{2}x}{\sqrt{9-x^2}}=0\Leftrightarrow\sqrt{9-x^2}\left(5-3x^2\right)=-4\sqrt{2}x\)

     \(\Leftrightarrow\left(9-x^2\right)\left(5-3x^2\right)=32x^2\) (với điều kiện \(5-3x^2\ge0\))

     \(\Leftrightarrow9x^9-111x^4+327x^2-225=0\)

     \(\Leftrightarrow x^2=1;x^2=3;x^2=\frac{25}{3}\)

\(x^2\le\frac{5}{3}\) nên \(x^2=1\Leftrightarrow x=1,x=-1\) (loại)

Ta có \(f\left(-3\right)=-6;f\left(1\right)=10;f\left(0\right)=6\sqrt{2}\) suy ra Max \(f\left(x\right)=f\left(-1\right)=10\)

\(2\left(x+y+z\right)-xyz\le f\left(x\right)\le10\)

Dấu = xảy ra khi x=-1, y=z và \(x^2+y^2+z^2=9\)

\(\Leftrightarrow x=-1;y=z=2\)

17 tháng 12 2017

\(\dfrac{a+b}{2}và\sqrt{\dfrac{a^2+b^2}{2}}\)

biến đổi vế trái : \(\dfrac{a+b}{2}\Leftrightarrow\dfrac{\left(a+b\right)^2}{4}\)(1)

biến đổi vế phải : \(\sqrt{\dfrac{a^2+b^2}{2}}\Leftrightarrow\dfrac{\left(a+b\right)^2-2ab}{2}\)(2)

từ (1) và (2) \(\Rightarrow\)dpcm

17 tháng 12 2017

Chắc chưa học pp c/m bđt -.-

1 tháng 11 2018

1) AC+ BD= AB+ BC+ BC+ CD= 2 MB+ 2BC+ 2 CN= 2MN

2) AC+ CB+ 2 AC+ AC+ CD= 4AC+ CB+ CD= 4AC+ CA= 3AC

14 tháng 11 2022

Bài 1:

vecto AC+vecto BD

=vecto AM+vecto MC+vecto BM+vecto MD

=vecto MC+vecto MD

=2 vecto MN(ĐPCM)

24 tháng 2 2017

a/ \(9^{2n+1}+1=\left(9+1\right)\left(9^{2n}-9^{2n-1}+...\right)=10\left(9^{2n}-9^{2n-1}+...\right)\)

Chia hết cho 10

b/ \(3^{4n+1}+2=3^{4n+1}-3+5=3\left(3^{4n}-1\right)+5\)

\(=3\left(81^n-1\right)+5=3.80\left(81^{n-1}+...\right)+5\)

Cái này chia hết cho 5