K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2017

Ta có:

VT = 9 + 4 5 = 4 + 2.2 5  + 5 = 2 2  + 2.2 5  +  5 2 = 2 + 5 2

Vế trái bằng vế phải nên đẳng thức được chứng minh.

12 tháng 6 2019

9-\(4\sqrt{5}=5-4\sqrt{5}+4=\left(\sqrt{5}-2\right)^2\\ \)

=>\(\sqrt{9-4\sqrt{5}}=\left(2-\sqrt{5}\right)\)=> điều cần phải chứng minh 

16 tháng 7 2017

Câu a thì c/m được câu b đề yêu cầu gì thế.

a) Xét VP được :

\(\left(\sqrt{5}+2\right)^2\) sử dụng hàng đẳng thức số 1 :

\(\left(\sqrt{5}+2\right)^2=\sqrt{5}^2+2\cdot\sqrt{5}\cdot2+2^2=5+4\sqrt{5}+4=9+4\sqrt{5}=VT\)

Vậy \(\left(\sqrt{5}+2\right)^2=9+4\sqrt{5}\)

16 tháng 7 2017

a) \(\sqrt{9+4\sqrt{5}}=\left(\sqrt{5}+2\right)^2\)

Ta biến đổi vế phải :

\(VP=\left(\sqrt{5}+2\right)^2=\left(\sqrt{5}\right)^2+2.\sqrt{5}.2+2^2\) = \(5+4\sqrt{5}+4=9+4\sqrt{5}=VT\)

=> Ta có VT= VP <=> VP = VT

b) Thiếu đề =.= sao làm

CM : \(\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)

Giải :

VT= \(\sqrt{9-4\sqrt{5}}-\sqrt{5}=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{5}=\left|\sqrt{5}-2\right|-\sqrt{5}=\sqrt{5}-2-\sqrt{5}=-2\)

Thấy VT = VP = - 2

=> \(\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\) ( đpcm )

4 tháng 7 2023

a) \(\sqrt{117^2-108^2}=\sqrt{\left(117-108\right)\left(117+108\right)}=\sqrt{9\cdot225}=\sqrt{3^2\cdot15^2}=\left|3\cdot15\right|=45\)

b) \(\sqrt{9-4\sqrt{5}}+2=\sqrt{5-4\sqrt{5}+4}+2=\sqrt{\left(\sqrt{5}-2\right)^2}+2=\left|\sqrt{5}-2\right|+2=\sqrt{5}\)

4 tháng 7 2023

\(a,\sqrt{117^2-108^2}\\ =\sqrt{\left(117-108\right)\left(117+108\right)}\\ =\sqrt{9.225}\\ =\sqrt{3^2}.\sqrt{15^2}\\ =3.15\\ =45\)

\(b,\sqrt{9-4\sqrt{5}}+2=\sqrt{5}\)

\(VT=\sqrt{9-4\sqrt{5}}+2\\ =\sqrt{\sqrt{5^2}-2.2\sqrt{5}+2^2}+2\\ =\sqrt{\left(\sqrt{5}-2\right)^2}+2\\ =\left|\sqrt{5}-2\right|+2\\ =\sqrt{5}-2+2\\ =\sqrt{5}=VP\left(dpcm\right)\)

 

10 tháng 9 2019

\(VP=\sqrt{9+4\sqrt{5}}\)

\(=\sqrt{5+4\sqrt{5}+4}\)

\(=\sqrt{\sqrt{5}^2+2\sqrt{5}.2+2^2}\)

\(=\sqrt{\left(\sqrt{5}+2\right)^2}\)

\(=\sqrt{5}+2=VT\)