Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Ta có : \(1996\equiv1\left(mod5\right)\)
\(\Rightarrow1996^{1996}\equiv1^{1996}\left(mod5\right)\)
\(1991\equiv1\left(mod5\right)\)
\(\Rightarrow1991^{1991}\equiv1^{1991}\left(mod5\right)\)
\(\Rightarrow1996^{1996}-1991^{1991}\equiv1^{1996}-1^{1991}\left(mod5\right)\)
\(\Leftrightarrow1996^{1996}-1991^{1991}\equiv0\left(mod5\right)\)
Hay \(1996^{1996}-1991^{1991}⋮5\)
b,Ta có : \(9^{1972}=\left(9^2\right)^{986}=81^{986}\)
\(7^{1972}=\left(7^4\right)^{493}=2401^{493}\)
Ta lại có : \(81\equiv1\left(mod10\right)\)
\(\Rightarrow81^{986}\equiv1^{986}\left(mod10\right)\)
\(2401\equiv1\left(mod10\right)\)
\(\Rightarrow2401^{493}\equiv1^{493}\left(mod10\right)\)
\(\Rightarrow9^{1972}-7^{1972}=81^{986}-2401^{493}\equiv1^{986}-1^{493}\left(mod10\right)\)
\(\Leftrightarrow9^{1972}-7^{1972}=81^{986}-2401^{493}\equiv0\left(mod10\right)\)
hay \(9^{1972}-7^{1972}⋮10.\)
c, Ta có : \(89\equiv1\left(mod2\right)\)
\(\Rightarrow89^{26}\equiv1^{26}\left(mod2\right)\)
\(45\equiv1\left(mod2\right)\)
\(\Rightarrow45^{21}\equiv1^{21}\left(mod2\right)\)
\(\Rightarrow89^{26}-45^{21}\equiv1^{26}-1^{21}\left(mod2\right)\)
\(\Rightarrow89^{26}-45^{21}\equiv0\left(mod2\right)\)
Hay \(89^{26}-45^{21}⋮0\)
\(1996\equiv1\left(mod5\right)\Rightarrow1996^{1996}\equiv1\left(mod5\right)\)
\(1991\equiv1\left(mod5\right)\Rightarrow1991^{1991}\equiv1\left(mod5\right)\)
\(\Rightarrow1996^{1996}-1991^{1991}\equiv1-1=0\left(mod5\right)\Leftrightarrowđpcm.\)
\(9^{1972}=\left(9^2\right)^{986}=81^{986}\equiv1\left(mod10\right)\)
\(7^{1972}=\left(7^4\right)^{493}=2401^{493}\equiv1\left(mod10\right)\)
\(\Rightarrowđpcm.\)
a) \(1991\equiv2\left(mod9\right)\)
=> \(1991^{1990}\equiv2^{1990}\left(mod9\right)\)
=> \(1991^{1990}\equiv2^{3.633}.2\left(mod9\right)\equiv-2\left(mod9\right)\)
\(1990^{1991}\equiv1\left(mod9\right)\)
=> \(1991^{1990}+1990^{1991}\equiv8\left(mod9\right)\)
=> đpcm
b) Ta có 89 là số lẻ =>8926 lẻ
45 là số lẻ => 4521lẻ
=> 8926 - 4521 chẵn => chia hết cho 2 => đpcm
NHỚ CHO MIK NHA BẠN THÂN MẾN
mod là modun
ví dụ như 3 chia 2 dư 1
5 chia 2 dư 1 ta nói 3 đồng dư với 1 theo modun 2
và \(5\equiv1\left(mod2\right)\)
`#3107.101107`
\(B=4+4^2+4^3+...+4^{89}+4^{90}\)
\(=\left(4+4^2+4^3\right)+...+\left(4^{88}+4^{89}+4^{90}\right)\)
\(=4\left(1+4+4^2\right)+...+4^{88}\left(1+4+4^2\right)\)
\(=\left(1+4+4^2\right)\left(4+...+4^{88}\right)\)
\(=21\left(4+4^{88}\right)\)
Vì \(21\left(4+4^{88}\right)\) `\vdots 21`
`\Rightarrow B \vdots 21`
Vậy, `B \vdots 21.`
4+42+43+...+426
=(4+42)+...+(425+426)
=4.(1+4)+...+425.(1+4)
=4.5+...+425.5
=5.(4+...+425) CHIA HẾT CHO 20 VÀ K CHIA HẾT CHO 21
Chị ngại đánh máy nên ns cách lm thôi nhé
A) E nhân C vs 2 thì sẽ xuất hiện 2^90
Sau đó lấy 2C - C thì sẽ triệt tiêu hết còn 2^90 - 1 hay C = 2^90 -1 => C<2^90
B) 1 + 2 + 2^2 =7
=> Nhóm C thành các nhóm sao có chứ 1 + 2 + 2^2 ( lưu ý là mấy nhóm sau phải đặt một lũy thừa của 2 ra ngoài mới xuất hiện đc tổng đó nhé )
C) 1 + 2 + 2^2 + 2^3 = 15
Em nhóm ra như cách làm phần B thì được 22 nhóm, dư 2 số cuối => C ko chia hết cho 15
Ko hiểu chỗ nào thì hỏi nhé
Bài giải
Ta có :
a, \(C=1+2+2^2+...+2^{89}\)
\(2C=2+2^2+2^3+....+2^{90}\)
\(2C-C=2^{90}-1\)
\(\Rightarrow\text{ }C=2^{90}-1\)
b, \(C=1+2+2^2+...+2^{89}\)
\(C=1+2+2^2+\left(2^3+2^4+2^5\right)+...+\left(2^{87}+2^{88}+2^{89}\right)\)
\(C=1+2+2^2+2^3\left(1+2+2^2\right)+...+2^{87}\left(1+1+2^2\right)\)
\(C=7+2^3\cdot7+...+2^{87}\cdot7\)
\(\Rightarrow\text{ }C\text{ }⋮\text{ }7\)
c, Bạn làm tương tự câu b nha !
3. Theo bài ta có : \(\frac{26+c}{45}\) = \(\frac{2}{3}\)
\(\Rightarrow\frac{26+c}{45}=\frac{30}{45}\)
\(\Rightarrow\) 26 + c = 30
\(\Rightarrow c=30-26\)
\(\Rightarrow c=4\)
L-I-K-E !!!
8926 se co ket qua bang 1 so le
4521 se co ket qua bang 1 so le
-ma so le-so le=so chan, ma so chan chia het cho 2
-nen 8926-4521chia het cho 2