Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có 2√5= = √20 ; 3√2 = = √ 18 => 2√5 > 3√2
=> <
b) 6√3 = = √108 ; 3√6 = = √54 => 6√3 > 3√6 => >
a) \(2\sqrt{5}=\sqrt{2^2.5}=\sqrt{20}\)
\(3\sqrt{2}=\sqrt{3^2.2}=\sqrt{18}\)
=> \(2\sqrt{5}>3\sqrt{2}\)
=> \(\left(\dfrac{1}{3}\right)^{2\sqrt{5}}< \left(\dfrac{1}{3}\right)^{3\sqrt{2}}\)
(vì cơ số \(\dfrac{1}{3}< 1\))
b) Vì \(3< 6^2\)
=> \(3^{\dfrac{1}{6}}< \left(6^2\right)^{\dfrac{1}{6}}\)
=> \(\sqrt[6]{3}< 6^{\dfrac{1}{3}}\)
=> \(\sqrt[6]{3}< \sqrt[3]{6}\)
=> \(7^{\sqrt[6]{3}}< 7^{\sqrt[3]{6}}\)
Ta có:
7=3k+1\(\Rightarrow\)7\(^{n+1}\)=3k+1 với mọi n thuộc N
8=3k+2\(\Rightarrow\)8\(^{2n+1}\)=3k+2 với mọi n thuộc N
\(\Rightarrow\)7\(^{n+1}\)+8\(^{2n+1}\)=(3k+1)+(3k+2)=3k+3\(⋮\)3(đpcm)
d1 co vtcp la vecto a1(2;-3;4);d2 co vtcp a2(3;2;-2).d1 qua A(1;-2;5),d2 wa B(7;2;1).
(a1;a2).vectoAB=0---->d1,d2 cung thuoc (P).goi I la giao cua d1 va d2---------->I.(P)wa I va co vtpt la vecto n=(a1;a2)------->(P)
a: Xét (O) có
AM,AN là các tiếp tuyến
nên AM=AN
mà OM=ON
nên OA là đường trung trực của MN
=>ΔAMN cân tại A
b: Vì OA là trung trực của MN
nên OA vuông góc với MN tại trung điểm của MN
=>IM=IN