K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

iả sử √7 là số hữu tỉ 
=> √7 = a/b (a,b ∈ Z ; b ≠ 0) 
không mất tính tổng quát giả sử (a;b) = 1 
=> 7 = a²/b² 
<=> a² = b7² 
=> a² ⋮ 7 
7 nguyên tố 
=> a ⋮ 7 
=> a² ⋮ 49 
=> 7b² ⋮ 49
=> b² ⋮ 7
=> b ⋮ 7 
=> (a;b) ≠ 1 (trái với giả sử) 
=> giả sử sai 
=> √7 là số vô tỉ

Giả sử √7 là số hữu tỉ 

=> √7 = a/b (a,b ∈ Z ; b ≠ 0) 

không mất tính tổng quát giả sử (a;b) = 1 

=> 7 = a²/b² 

<=> a² = b7² 

=> a² ⋮ 7 

7 nguyên tố 

=> a ⋮ 7 

=> a² ⋮ 49 

=> 7b² ⋮ 49

=> b² ⋮ 7

=> b ⋮ 7 

=> (a;b) ≠ 1 (trái với giả sử) 

=> giả sử sai 

=> √7 là số vô tỉ

Cre: Lazi

#Học tốt!

7 tháng 1 2022

Chứng minh bằng phương pháp phản chứng : 

Giả sử \(\sqrt{7}\)là một số hữu tỉ . Suy ra có thể biểu diễn dưới dạng \(\sqrt{7}=\frac{m}{n}\) (\(m,n\in Z,n\ne0\)) và \(\frac{m}{n}\)tối giản.

\(\Rightarrow7n^2=m^2\Rightarrow m^2⋮7\Rightarrow m⋮7\)(1)

Do đó, đặt m = 7k (\(k\in N\))

=> \(m^2=49k^2\Rightarrow n^2=7k^2\Rightarrow n^2⋮7\Rightarrow n⋮7\)(2)

Từ (1) và (2) Suy ra được m,n cùng chia hết cho 7

=> \(\frac{m}{n}\) chưa là phân số tối giản (vô lí vì trái với giả thiết)

Điều vô lí chứng tỏ \(\sqrt{7}\)là số vô tỉ.

7 tháng 5 2022

giả sử √7 là số hữu tỉ 
=> √7 = a/b (a,b ∈ Z ; b ≠ 0) 
không mất tính tổng quát giả sử (a;b) = 1 
=> 7 = a²/b² 
<=> a² = b7² 
=> a² ⋮ 7 
7 nguyên tố 
=> a ⋮ 7 
=> a² ⋮ 49 
=> 7b² ⋮ 49
=> b² ⋮ 7
=> b ⋮ 7 
=> (a;b) ≠ 1 (trái với giả sử) 
=> giả sử sai 
=> √7 là số vô tỉ

 

27 tháng 2 2021

Giả sử \(\sqrt{7}\) là số hữu tỉ 

Ta có :

\(\sqrt{7}=\dfrac{a}{b}\) (a,b nguyên tố cũng nhau)

\(\Leftrightarrow\dfrac{a^2}{b^2}=7\)

\(\Leftrightarrow a^2=7b^2\)

\(\Leftrightarrow a^2⋮7\) Mà 7 là số nguyên tố 

\(\Leftrightarrow a⋮7\) \(\left(1\right)\)

\(\Leftrightarrow a^2⋮49\)

\(\Leftrightarrow7b^2⋮49\)

\(\Leftrightarrow b⋮7\) \(\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow a,b\) không ngto cùng nhau

\(\Leftrightarrow\) Giả sử sai

Vậy..

6 tháng 4 2021

Giả sử căn 7 là số hữu tỉ. Khi đó 

\(\sqrt{7}=\dfrac{a}{b}\left(a,b\in N;a,b>0;\left(a,b\right)=1\right)\)

\(\Rightarrow7b^2=a^2\)

\(\Rightarrow a^2⋮7\Rightarrow a⋮7\Rightarrow a^2⋮49\Rightarrow7b^2⋮49\Rightarrow b^2⋮7\Rightarrow b⋮7\\ \Rightarrow\left(a,b\right)⋮7\Rightarrow1⋮7\left(VL\right)\)

=> giả sử sai .

Vậy căn 7 là số vô tỉ

giả sử √7 là số hữu tỉ 
=> √7 = a/b (a,b ∈ Z ; b ≠ 0) 
không mất tính tổng quát giả sử (a;b) = 1 
=> 7 = a²/b² 
<=> a² = b7² 
=> a² ⋮ 7 
7 nguyên tố 
=> a ⋮ 7 
=> a² ⋮ 49 
=> 7b² ⋮ 49
=> b² ⋮ 7
=> b ⋮ 7 
=> (a;b) ≠ 1 (trái với giả sử) 
=> giả sử sai 
=> √7 là số vô tỉ

18 tháng 4 2022

Giả sử \(\sqrt{7}\) là số hữu tỉ \(\Rightarrow\sqrt{7}=\dfrac{m}{n}\left(m,n\in Z;n\ne0\right)\) sao cho \(\left(m,n\right)=1\)

\(\Rightarrow m^2=7n^2\) \(\Rightarrow m^2⋮7\)

Do 7 là số nguyên tố nên \(m⋮7\Rightarrow m=7k\Rightarrow49k^2=7n^2\Rightarrow n^2=7k^2\)

Suy luận như trên ta được \(n⋮7\)

\(\Rightarrow7\inƯC\left(m,n\right)\) (mâu thuẫn giả thiết \(\left(m,n\right)=1\))

Vậy \(\sqrt{7}\) là số vô tỉ

18 tháng 4 2022

Giả sử phản chứng √7 là số hữu tỉ ⇒ √7 có thể biểu diễn dưới dạng phân số tối giản m/n  √7= m/n  ⇒ 7 = m²/n²  ⇒ m² =7n²  ⇒ m² chia hết cho n²  ⇒ m chia hết cho n (vô lý vì m/n là phân số tối giản nên m không chia hết cho n)  Vậy giả sử phản chứng là sai. Suy ra √7 là số vô tỉ.

24 tháng 9 2023

Giả sử \(\sqrt{7}\) là số hữu tỉ

=> \(\sqrt{7}=\dfrac{m}{n}\)(Tối giản)

=> 7=\(\dfrac{m^2}{n^2}\)hay 7n2=m2(1)

Đẳng thức này chứng tỏ m2\(⋮7\)mà 7 là số nguyên tố nên \(m⋮7\).

Đặt m=7k (\(k\in Z\)), ta có m2=49k2(2)

Từ (1) và (2) suy ra 7n2=49knên n2=7k2(3)

Từ (3) ta lại có \(n^2⋮7\)và vì 7 là số nguyên tố nên n⋮7. m và n cùng chia hết cho 7 nên phân số \(\dfrac{m}{n}\)không tối giản, trái giả thiết.

Vậy \(\sqrt{7}\) không phải số hữu tỉ; do đó \(\sqrt{7}\) là số vô tỉ.

24 tháng 9 2023

Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức : S = x2 + y2
 

Chị làm được bài này ko ạk?

 

 

 

 

5 tháng 6 2016

sach nang cao chuyen de toan 9 tap 1