Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M = 182018 + 20162017
= (2.9)2018 + (9.224)2017
= 92018.22018 + 92017.2242017
= 92017(9.22018 + 2242017) \(⋮\)9 (1)
Lại có : M = 182018 + 20162017
= 182016.182 + (...6)2017
= (184)504.(...4) + (...6)
= (....6)504.(...4) + (...6)
= (...6).(...4) + (...6) = (...4) + (...6) = (...0) \(⋮5\)(2)
lại có (9;5) = 1 (3)
Từ (1)(2)(3) => M \(⋮\)9.5= 45
câu 1 : x = 7;4;3
nếu : x-1=6
=> x=7
nếu : x-1=3
=> x=4
nếu : x-1=2
=> x=3
Vậy : x thuộc tập hợp gồm 3 phần tử là : 7;3;4
a)
\(6⋮x-1\Rightarrow x-1\inƯ\left(6\right)=\left\{1;2;3;6\right\}\)
\(x-1=1\Rightarrow x=2\)
\(x-1=2\Rightarrow x=3\)
\(x-1=3\Rightarrow x=4\)
\(x-1=6\Rightarrow x=7\)
Vậy \(x\in\left\{2;3;4;7\right\}\)
b)
\(14⋮2x+3\Rightarrow2x+3\inƯ\left(14\right)=\left\{1;2;7;14\right\}\)
Vì 2x + 3 là số lẻ và \(2x+3\ge3\Rightarrow2x+3=7\)
\(2x+3=7\)
\(\Rightarrow2x=7-3\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=2\)
Vậy \(x=2\)
anh mình thấy mình cứ online nên nhờ mình vào đây hỏi không ai giúp thì để mình xóa
gọi d = (a2; a+ b)
=> a2 chia hết cho d và a+ b chia hết cho d
a2 chia hết cho d => a chia hết cho d
=> b = (a+b) - a chia hết cho d
=> d \(\in\) ƯC(a; b) => d \(\le\) (a;b) = 1 => d = 1
Vậy .......
a. ta có
3n+3 =3(n+1) luôn chia hết cho n+1 với mọi số tự nhiên n
b. ta có :\(5n+19\text{ chia hết cho 2n+1 thì }10n+38\text{ cũng chia hết cho 2n+1}\)
mà \(10n+38=5\left(2n+1\right)+33\text{ chia hết cho }2n+1\) khi 33 chia hết cho 2n+1
hay \(2n+1\in\left\{1,3,11,33\right\}\Rightarrow n\in\left\{0,1,5,16\right\}\)
Bài 4: b) Vì n(n+1)(n+2) là tích của 3 số tự nhiên liên tiếp.
=> Tồn tại 1 số chia hết cho 2.
Tồn tại 1 số chia hết cho 3.
=> n(n+1)(n+2) chia hết cho cả 2 và 3.
c) Ta có: n(n+1)(2n+1)=n(n+1)[(n+2)+(n-1)]
=n(n+1)(n+2)+n(n+1)(n-1)
Nhận thấy: n(n+1)(n+2) và n(n+1)(n-1) là tích của 3 số tự nhiên liên tiếp
=>Tồn tại 1 số chia hết cho 2.
Tồn tại 1 số chia hết cho 3.
=> n(n+1)(2n+1) chia hết cho 2 và 3.
bài 3 nah không biết đúng hông nữa
n=20a20a20a=20a20a.1000+20a=(20a.1000+20a).1000+20a=1001.20a.1000+20a
theo đề bài n chia hết cho 7,mà 1001 chia hết cho 7 nên 20a chia hết cho 7
ta có 20a = 196+(4+a),chia hết cho 7 nên 4 + a chia hết cho 7 .Vậy a = 3
Vì \(10-2n⋮n-2\)\(\Rightarrow2n-10⋮n-2\)\(\Rightarrow2n-4-6=2\left(n-2\right)-6⋮n-2\)(1)
Vì \(2\left(n-2\right)⋮n-2\)\(\Rightarrow\)Để xảy ra (1) thì \(-6⋮n-2\)\(\Rightarrow n-2\inƯ\left(-6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
\(\Rightarrow n\in\left\{1;3;0;4;-1;5;-4;8\right\}\)
mà \(n\inℕ\)\(\Rightarrow n\in\left\{0;1;3;4;5;8\right\}\)
Vậy \(n\in\left\{0;1;3;4;5;8\right\}\)
a) (2n+8).(5n-5)=2(n+4).5(n-1)=10(n+4)(n-1) chia hết cho 10
b) Ta có 2n+1 và 4n+5 đều là số lẻ nên (2n+1)(4n+5) là số lẻ
=> (2n+1)(4n+5) không chia hết cho 2
Đề sai rồi bạn
đề sai?