Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:a3+11a
=a3-a+12a
=a(a2-1)+12a
=(a-1)(a+1)a+12a
Vì a-1;a;a+1 là tích 3 số nguyên liên tiếp nên a(a-1)(a+1) chia hết cho 6
Mà 12a chia hết cho 6
Suy ra a3+11a chia hết cho 6
Ta có a3+11a=a(a2+11) = a(a2-1+12)= a(a-1)(a+1)+12a
mà \(\left\{{}\begin{matrix}a\left(a-1\right)\left(a+1\right)\\12a\end{matrix}\right.⋮6\Leftrightarrow a\left(a-1\right)\left(a+1\right)+12a⋮6\)
=> a3+11a ⋮6 (\(\forall a\in Z\))
câu 1 bạn phân tích ra là a(a+1)(a+2)(a+3) là 4 số tự nhiên liên tiếp nên chia hết cho 24.
câu 2 bạn phân tích ra thành (a-2)(a-1)a(a+1)(a+2) là 5 số tự nhiên liên tiếp nên chia hết cho 120
bài 3 phân tích ra thành:(a-2)(a-1)a(3a-5) nhưng mình k biết nó chia hết cho 24 ở chỗ nào
a) Ta có: \(P=5x^2+4xy-6x+y^2+2030\)
\(=\left(4x^2+4xy+y^2\right)+\left(x^2-6x+9\right)+2021\)
\(=\left(2x+y\right)^2+\left(x-3\right)^2+2021\ge2021\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-3=0\\y+2x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-2x=-6\end{matrix}\right.\)
b) Ta có: \(a^5-5a^3+4a\)
\(=a\left(a^4-5a^2+4\right)\)
\(=a\left(a^2-4\right)\left(a^2-1\right)\)
\(=\left(a-2\right)\left(a-1\right)\cdot a\cdot\left(a+1\right)\left(a+2\right)\)
Vì a-2;a-1;a;a+1;a+2 là tích của 5 số nguyên liên tiếp
nên \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5!\)
hay \(a^5-5a^3+4a⋮120\)
a) Gợi ý: phân tích 50 n + 2 - 50 n + 1 = 245.10. 50 n .
b) Gợi ý: phân tích n 3 - n = n(n - 1)(n +1).