K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2015

Minh lam cau A) thoi duoc hong

9 tháng 9 2017

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

10 tháng 12 2017

Thanks bạn

12 tháng 3 2020

+) C=5+52+53+54+....+52010

<=> C=(5+52)+(53+54)+.....+(52009+52010)

<=> C=5(1+5)+53(1+5)+....+52009(1+5)

<=> C=5 x 6 +53 x 6+....+52009 x 6

<=> C=6(5+53+....+52009)

=> C chia hết cho 6 (đpcm)

+) C=5+52+53+54+....+52010

<=> C=(5+52+53)+(54+55+56)+....+(52008+52009+52010)

<=> C=5(1+5+25)+54(1+5+25)+....+52008(1+5+25)

<=> C=5 x 31+54x31 +....+52008 x 31

<=> C=31(5+54+....+52008)

=> C chia hết cho 31 (đpcm)

12 tháng 3 2020

+) D=7+72+73+74+....+72010

<=> D=(7+72)+(73+74)+....+(72009+72010)

<=> D=7(1+7)+73(1+7)+....+72009(1+7)

<=> D=7 x 8 +73 x 8 +....+72009 x 8

<=> D=8(7+73+....+72009)

+) D=7+72+73+74+....+72010

<=> D=(7+72+73)+(74+75+76)+....+(72008+72009+72010)

<=> D=7(1+7+49)+74(1+7+49)+....+72008(1+7+49)

<=> D=7 x 57 +74 x 57+....+72008 x 57

<=> D=57(7+74+...+72008)

=> D chia hết cho 57 (đpcm)

20 tháng 7 2015

a , 5^5 -5^4+5^3=5^3.5^2 -5^3.5+5^3 
=5^3(5^2-5+1)=5^3.21 
vì 21 chia hết cho 7 =>5^3.21 chia hết cho 7 
vậy 5^5 -5^4+5^3 chia hết cho 7 

b, 7^6+7^5-7^4 
=7^4(7^2+7-1) 
=7^4.55=7^4.5.11 chia hết cho 11 

20 tháng 7 2015

a , 5^5 -5^4+5^3=5^3.5^2 -5^3.5+5^3 
=5^3(5^2-5+1)=5^3.21 
vì 21 chia hết cho 7 =>5^3.21 chia hết cho 7 
vậy 5^5 -5^4+5^3 chia hết cho 7 

b, 7^6+7^5-7^4 
=7^4(7^2+7-1) 
=7^4.55=7^4.5.11 chia hết cho 11 

giai xoq moq pn **** gium mk nke

16 tháng 7 2015

a) 55 - 54 + 53 = 53.(52 - 5 + 1) = 53.(25 - 5 + 1) = 53.21 chia hết cho 7

b) 76 + 75 - 74 = 74.(72 + 7 - 1) = 74.(49 + 7 - 1) = 74.55 chia hết cho 11

4 tháng 12 2014

A=2^1+2^2+2^3+2^4+...+2^2010 

=(2+2^2)+(2^3+2^4)+...+(2^2010+2^2011)

=2.(1+2)+2^3.(1+2)+...+2^2010.(1+2)

=2.3+2^3.3+...+2^2010.3

=(2+2^3+2^2010).3

=> A chia het cho 3

​​​​ 

 

10 tháng 12 2014

Mà câu c bạn đánh chia hết thành chết hết rồi kìa

DD
16 tháng 12 2020

a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)

Các ý dưới bạn làm tương tự nhé. 

20 tháng 12 2014

Ta có: 5^5-5^4+5^3

=(5^5-5^4)+5^3

=(5^4.5-5^4)+5^3

=[5^4.(5-1)]+5^3

=5^4.4-5^3

=5^3.5.4+5^3

=5^3.20+5^3

=5^3.(20+1)

=5^3.21=5^3.3.7 chia hết cho 7.

5 tháng 7 2017

a, Ta có:

\(5^5-5^4+5^3=5^3.\left(5^2-5+1\right)=5^3.21\)

\(5^3.21\) chia hết cho 7 nên \(5^5-5^4+5^3\) chia hết cho 7(đpcm)

b, Ta có:

\(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)=7^4.55\)

\(7^4.55\) chia hết cho 11 nên \(7^6-7^5+7^4\) chia hết cho 11(đpcm)

Chúc bạn học tốt!!!

5 tháng 7 2017

a, \(5^5-5^4+5^3=5^3\left(5^2-5+1\right)=5^3.21⋮7\)

\(\Rightarrowđpcm\)

b, \(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4.55⋮11\)

\(\Rightarrowđpcm\)