Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\begin{cases}5^{27}=5^{3.9}=\left(5^3\right)^9=125^9\\2^{63}=2^{7.9}=\left(2^7\right)^9=128^9\end{cases}\)
Vì 1259 < 1289 => 527 < 263 (1)
\(\begin{cases}5^{28}=5^{4.7}=\left(5^4\right)^7=625^7\\2^{63}=2^{7.9}=\left(2^9\right)^7=512^7\end{cases}\)
Vì 6257 > 5127 nên 528 > 263 ( 2 )
Từ ( 1 ) , ( 2) ta có : 527 < 263 < 528 ( đpcm )
Ta có:
5^ 27 = 5^ 3.9 = (5 ^3 ) 9 = 125 ^9 <128^ 9 = 2 ^7.9 = (2 ^7 ) 9 = 2 ^63
suy ra: 5 ^27 <2 ^63 (1)
lại có;2 ^63 <2^ 64 = 2 ^16,4 = (2 ^16 ) 4 = 65536 ^4 <78125 ^4 = 5 ^7.4 = (5 ^7 ) 4 = 5 ^28
suy ra: 2 ^63 <2 ^64 <5 ^28
suy ra: 2 ^63 <5 ^28 (2)
từ (1) và (2) ta
5 ^27 <2 ^63 <5 ^28
suy ra: (ĐPCM)
1.
a) \(3^{23}< 5^{15}\)
b) \(127^{23}< 128^{23}=\left(2^7\right)^{23}=2^{161}\)
\(513^{18}>512^{18}=\left(2^9\right)^{18}=2^{162}\)
Vì \(162>161\Rightarrow2^{161}< 2^{162}\Rightarrow127^{23}< 513^{18}\)
2. Ta có:
\(5^{27}=5^{3.9}=\left(5^3\right)^9=125^9< 128^9=2^{7.9}=\left(2^7\right)^9=2^{63}\)
\(\Rightarrow5^{27}< 2^{63}\left(1\right)\)
Lại có: \(2^{63}< 2^{64}=2^{16.4}=\left(2^{16}\right)^4=65536^4< 78125^4=5^{7.4}=\left(5^7\right)^4=5^{28}\)
\(\Rightarrow2^{63}< 2^{64}< 5^{28}\Rightarrow2^{63}< 5^{28}\left(2\right)\)
Từ 1 và 2 => đpcm
5^27=5^(3×9)
2^63=2^(7×9)
5^28=5^(7×4)
Mình phân tích thôi rồi cậu tự làm nhé. Cạn kiệt chất sáng rồi
1)
a)
\(\frac{-5}{6}.\frac{120}{25}< x< \frac{-7}{15}.\frac{9}{14}\)
\(\frac{-1}{1}.\frac{20}{5}< x< \frac{-1}{5}.\frac{3}{2}\)
\(\frac{-20}{5}< x< \frac{-3}{10}\)
\(\frac{-40}{10}< x< \frac{-3}{10}\)
\(\Rightarrow Z\in\left\{-4;-5;-6;-7;-8;-9;-10;...;-39\right\}\)
Kiyoko Vũ
a, xét từng đoạn 1 , 1/2 ,1/2^3 ,1/2^4 ,1/2^5 ,1/2^6
ta có
1 = 1
1/2 + 1/3 < 1/2 + 1/2 = 1
1/4 + 1/5 + .. + 1/7 < 1/4 +..+ 1/4 = 4/4 = 1
1/8 + 1/9 + .. + 1/15 < 1/8 + .. + 1/8 = 8/8 = 1
tương tự
1/16 +1/17 + .. + 1/31 < 1
1/32 + 1/33 + .. + 1/63 < 1
=> cộng lại => A < 6
b, Câu hỏi của trịnh quỳnh trang - Toán lớp 6 - Học toán với OnlineMath
Ta có :
\(S=\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\)
\(S=\dfrac{1}{5}+\left(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}\right)+\left(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\right)\)
Nhận xét :
\(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}< \dfrac{1}{12}+\dfrac{1}{12}+\dfrac{1}{12}=\dfrac{1}{4}\)
\(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< \dfrac{1}{60}+\dfrac{1}{60}+\dfrac{1}{60}=\dfrac{1}{20}\)
\(\Rightarrow S< \dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{20}\)
\(\Rightarrow S< \dfrac{1}{2}\rightarrowđpcm\)
a, \(\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)\)
Ta có: \(\frac{1}{13}< \frac{1}{12};\frac{1}{14}< \frac{1}{12};\frac{1}{15}< \frac{1}{12}\Rightarrow\frac{1}{13}+\frac{1}{14}+\frac{1}{15}< \frac{1}{12}+\frac{1}{12}+\frac{1}{12}=\frac{3}{12}=\frac{1}{4}\)
\(\frac{1}{61}< \frac{1}{60};\frac{1}{62}< \frac{1}{60};\frac{1}{63}< \frac{1}{60}\Rightarrow\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{60}+\frac{1}{60}+\frac{1}{60}=\frac{3}{60}=\frac{1}{20}\)
\(\Rightarrow\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{5}+\frac{1}{4}+\frac{1}{20}=\frac{1}{2}\)
Vậy...
b, Đặt A là tên của tổng trên
Ta có: \(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}=\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)
Đặt B là biêu thức trong ngoặc
Ta có: \(1=1;\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};....;\frac{1}{50^2}< \frac{1}{49.50}\)
\(\Rightarrow B< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(\Rightarrow B< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow B< 2-\frac{1}{50}< 2\)
Thay B vào A ta được:
\(A< \frac{1}{2^2}.2=\frac{1}{2}\)
A = 1/5 + 1/13 + 1/14 + 1/15 + 1/60 + 1/61 + 1/62 + 1/63
Ta có : A = 1/5 + 1/13 + 1/14 + 1/15 + 1/60 + 1/61 + 1/62 + 1/63 < 1/5 + 1/12 + 1/12 + 1/12 + 1/60 + 1/60 + 1/60
= A < 1/5 + 1/4 + 1/20
= A < 1/2
Vậy A < 1/12
\(\left(2^{2.5}\right)^{24}< 2^{63}< \left(2^{2.5}\right)^{28}\)
\(=2^{60}< 2^{63}< 2^{70}\)