\(5^{24}< 2^{63}< 5^{28}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2018

\(\left(2^{2.5}\right)^{24}< 2^{63}< \left(2^{2.5}\right)^{28}\)

\(=2^{60}< 2^{63}< 2^{70}\)

24 tháng 4 2020

Ta có : \(\begin{cases}5^{27}=5^{3.9}=\left(5^3\right)^9=125^9\\2^{63}=2^{7.9}=\left(2^7\right)^9=128^9\end{cases}\)

Vì 1259 < 1289  => 527 < 263        (1) 

\(\begin{cases}5^{28}=5^{4.7}=\left(5^4\right)^7=625^7\\2^{63}=2^{7.9}=\left(2^9\right)^7=512^7\end{cases}\)

Vì 6257 > 5127  nên 528 > 263                  ( 2 ) 

Từ ( 1 ) , ( 2) ta có : 527 < 263 < 528 ( đpcm )

11 tháng 2 2022

Ta có:

 

5^ 27 = 5^ 3.9 = (5 ^3 ) 9 = 125 ^9 <128^ 9 = 2 ^7.9 = (2 ^7 ) 9 = 2 ^63

 

suy ra: 5 ^27 <2 ^63 (1)

 

lại có;2 ^63 <2^ 64 = 2 ^16,4 = (2 ^16 ) 4 = 65536 ^4 <78125 ^4 = 5 ^7.4 = (5 ^7 ) 4 = 5 ^28

 

suy ra: 2 ^63 <2 ^64 <5 ^28

 

suy ra: 2 ^63 <5 ^28 (2)

 

từ (1) và (2) ta

 

5 ^27 <2 ^63 <5 ^28

 

suy ra: (ĐPCM)

2 tháng 10 2020

1. 

a) \(3^{23}< 5^{15}\)

b) \(127^{23}< 128^{23}=\left(2^7\right)^{23}=2^{161}\)

\(513^{18}>512^{18}=\left(2^9\right)^{18}=2^{162}\)

Vì \(162>161\Rightarrow2^{161}< 2^{162}\Rightarrow127^{23}< 513^{18}\)

2 tháng 10 2020

2. Ta có: 

\(5^{27}=5^{3.9}=\left(5^3\right)^9=125^9< 128^9=2^{7.9}=\left(2^7\right)^9=2^{63}\)

\(\Rightarrow5^{27}< 2^{63}\left(1\right)\)

Lại có: \(2^{63}< 2^{64}=2^{16.4}=\left(2^{16}\right)^4=65536^4< 78125^4=5^{7.4}=\left(5^7\right)^4=5^{28}\)

\(\Rightarrow2^{63}< 2^{64}< 5^{28}\Rightarrow2^{63}< 5^{28}\left(2\right)\)

Từ 1 và 2 => đpcm

25 tháng 2 2018

5^27=5^(3×9)

2^63=2^(7×9)

5^28=5^(7×4)

Mình phân tích  thôi rồi cậu tự làm nhé. Cạn kiệt chất sáng rồi

2 tháng 4 2019

1)

a)

\(\frac{-5}{6}.\frac{120}{25}< x< \frac{-7}{15}.\frac{9}{14}\)

\(\frac{-1}{1}.\frac{20}{5}< x< \frac{-1}{5}.\frac{3}{2}\)

\(\frac{-20}{5}< x< \frac{-3}{10}\)

\(\frac{-40}{10}< x< \frac{-3}{10}\)

\(\Rightarrow Z\in\left\{-4;-5;-6;-7;-8;-9;-10;...;-39\right\}\)

2 tháng 4 2019

\(\left(\frac{-5}{3}\right)^3< x< \frac{-24}{35}.\frac{-5}{6}\)

\(\frac{25}{3}< x< \frac{-4}{7}.\frac{1}{1}\)

\(\frac{-25}{3}< x< \frac{-4}{7}\)

\(\frac{-175}{21}< x< \frac{-12}{21}\)

\(\Rightarrow Z\in\left\{-13;-14;-15;-16;...;-174\right\}\)

30 tháng 4 2019

P = 1/2 + ....1/2^20

2P = 1 + 1/2^2 + 1/2^3+.... + 1/2^19

2P - P 

P = 1-2/2^20

Suy ra P nhỏ hơn 1

= > Chứng tỏ P =.... nhỏ hơn 1 cái này cậu nhập câu hỏi lên google cũng thấy

S thì cậu làm tương tự như P là đc

1 tháng 5 2017

Kiyoko Vũ

a, xét từng đoạn 1 , 1/2 ,1/2^3 ,1/2^4 ,1/2^5 ,1/2^6
ta có
1 = 1
1/2 + 1/3 < 1/2 + 1/2 = 1
1/4 + 1/5 + .. + 1/7 < 1/4 +..+ 1/4 = 4/4 = 1
1/8 + 1/9 + .. + 1/15 < 1/8 + .. + 1/8 = 8/8 = 1
tương tự
1/16 +1/17 + .. + 1/31 < 1
1/32 + 1/33 + .. + 1/63 < 1
=> cộng lại => A < 6

b, Câu hỏi của trịnh quỳnh trang - Toán lớp 6 - Học toán với OnlineMath

4 tháng 5 2017

Ta có :

\(S=\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\)

\(S=\dfrac{1}{5}+\left(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}\right)+\left(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\right)\)

Nhận xét :

\(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}< \dfrac{1}{12}+\dfrac{1}{12}+\dfrac{1}{12}=\dfrac{1}{4}\)

\(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< \dfrac{1}{60}+\dfrac{1}{60}+\dfrac{1}{60}=\dfrac{1}{20}\)

\(\Rightarrow S< \dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{20}\)

\(\Rightarrow S< \dfrac{1}{2}\rightarrowđpcm\)

2 tháng 5 2017

a, \(\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)\)

Ta có: \(\frac{1}{13}< \frac{1}{12};\frac{1}{14}< \frac{1}{12};\frac{1}{15}< \frac{1}{12}\Rightarrow\frac{1}{13}+\frac{1}{14}+\frac{1}{15}< \frac{1}{12}+\frac{1}{12}+\frac{1}{12}=\frac{3}{12}=\frac{1}{4}\)

\(\frac{1}{61}< \frac{1}{60};\frac{1}{62}< \frac{1}{60};\frac{1}{63}< \frac{1}{60}\Rightarrow\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{60}+\frac{1}{60}+\frac{1}{60}=\frac{3}{60}=\frac{1}{20}\)

\(\Rightarrow\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{5}+\frac{1}{4}+\frac{1}{20}=\frac{1}{2}\)

Vậy...

2 tháng 5 2017

b, Đặt A là tên của tổng trên

Ta có: \(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}=\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)

Đặt B là biêu thức trong ngoặc

Ta có: \(1=1;\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};....;\frac{1}{50^2}< \frac{1}{49.50}\)

\(\Rightarrow B< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(\Rightarrow B< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow B< 2-\frac{1}{50}< 2\)

Thay B vào A ta được:

\(A< \frac{1}{2^2}.2=\frac{1}{2}\)

11 tháng 4 2018

A = 1/5 + 1/13 + 1/14 + 1/15 + 1/60 + 1/61 + 1/62 + 1/63

Ta có : A = 1/5 + 1/13 + 1/14 + 1/15 + 1/60 + 1/61 + 1/62 + 1/63 < 1/5 + 1/12 + 1/12 + 1/12 + 1/60 + 1/60 + 1/60 

               = A < 1/5 + 1/4 + 1/20 

               = A < 1/2

Vậy A < 1/12