Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(4n+3\right)^2-25\)
\(=\left(4n+3-5\right)\left(4n+3+5\right)\)
\(=\left(4n-2\right)\left(4n+8\right)\)chia hết cho 8 ( đpcm )
Theo đầu bài ta có:
\(\left(4n+3\right)^2-25\)
\(\Leftrightarrow\left(4n+3\right)^2-5^2\)
\(\Leftrightarrow\left[\left(4n+3\right)+5\right]\left[\left(4n+3\right)-5\right]\)
\(\Leftrightarrow\left[4n+8\right]\left[4n-2\right]\)
\(\Leftrightarrow\left[4\left(n+2\right)\right]\left[2\left(2n-1\right)\right]\)
\(\Leftrightarrow8\left(n+2\right)\left(2n-1\right)\)
Do 8 ( n + 2 ) ( 2n - 1 ) chia hết cho 8 nên ( 4n + 3 )2 - 25 chia hết cho 8 với mọi số nguyên n. ( đpcm )
a) (4n+3)^2-25=(4n+3+5)(4n-3+5)=(4n+8)(4n-2)=16n^2-8n+32n-16
Vì 16n^2 chia hết cho 8;8n chia hết cho 8;32n chia hết cho 8;16 chia hết cho 8
=>16n^2-8n+32n-16 chia hết cho 8
b)(2n+3)^2-9
=(2n+3-3)(2n+3+3)
=2n(2n+6)=4n^2+12n
Vì 4n^2 chia hết cho 4,12n chia hết cho 4=>4n^2+12n chia hết cho 4
(4n+3)2-25
=[(4n+3)-5][(4n+3)+5]
=(4n+3-5)(4n+3+5)
=(4n-2)(4n+8)
=2(2n-1)4(n+2)
=8(2n-1)(n+2)
vì 8⋮8
=> 8(2n-1)(n+2)⋮8
hay (4n+3)2-25⋮8(với mọi n)(đpcm)
(4n + 3)2 - 25
= (4n + 3)2 - 52
= (4n + 3 - 5)(4n + 3 + 5)
= (4n - 2)(4n + 8)
= 16n2 + 32n - 8n - 16
= 16n2 + 24n - 16
= 8(2n2 + 3n - 2)
Vì 8 ⋮ 8 nên 8(2n2 + 3n - 2) ⋮ 8
Hay (4n + 3)2 - 25 ⋮ 8
Câu hỏi của Lưu Thanh Vy - Toán lớp 8 - Học toán với OnlineMath
Em tham khaoe link trên.
a) \(n^2+4n+3\)
Vì n là số lẻ nên n : 2 dư 1
Gọi n = 2k + 1
Thay n = 2k + 1 vào \(n^2+4n+3\)
Có : \(n^2+4n+3\) \(=n^2+3n+n+3\)
\(=n\left(n+1\right)+3\left(n+1\right)\)= ( n + 3 ) ( n + 1 ) (1)
Thay n = 2k + 1 vào (1)
=> (1) = \(\left(2k+1+3\right)\left(2k+1+1\right)\)
\(=\left(2k+4\right)\left(2k+2\right)\)
\(=2\left(k+2\right)2\left(k+1\right)=4\left(k+2\right)\left(k+1\right)\)
Xét: k + 2; k + 1 là hai số tự nhiên liên tiếp
=> \(\left(k+2\right)\left(k+1\right)\) \(⋮2\)
=> \(4\left(k+2\right)\left(k+1\right)⋮8\)
=> đpcm
a) Ta có:
\(n^2+4n+3\)
\(=n^2+n+3n+3\)
\(=n\left(n+1\right)+3\left(n+1\right)\)
\(=\left(n+1\right)\left(n+3\right)\)
Mà n là số nguyên lẻ nên chia cho 2 dư 1 = 2k + 1 \(\left(k\in Z\right)\)
Do đó \(n^2+4n+3=\left(n+1\right)\left(n+3\right)=\left(2k+1+1\right)\left(2k+1+3\right)=\left(2k+2\right)\left(2k+4\right)=4\left(k+1\right)\left(k+2\right)\)
Mà \(\left(k+1\right)\left(k+2\right)\) là tích 2 số nguyên liên tiếp nên chia hết cho 2.
Vậy \(n^3+4n+3=\left(n+1\right)\left(n+3\right)=4\left(k+1\right)\left(k+2\right)\) chia hết cho 4; chi hết cho 2.
=> \(n^3+4n+3⋮4.2=8\)
Vậy ...
\(n^2+4n+3\)
\(=n^2+n+3n+3\)
\(=n\left(n+1\right)+3\left(n+1\right)\)
\(=\left(n+3\right)\left(n+1\right)\)
Vì n lẻ => n + 3 chẵn ; n + 1 chẵn
Mà n + 1 hoặc n + 3 chia hết cho 2 vì 2 số đều chẵn(1)
Lại có (n + 1)(n + 3) chia hết cho 4 vì đây là tích của 2 số chẵn liên tiếp(2)
Từ (1) và (2) \(\Rightarrow\left(n+1\right)\left(n+3\right)⋮\left(2.4\right)=8\)
Vậy \(n^2+4n+3⋮8\)<=> n lẻ
ta có n\(^2\)+4n+3
=n\(^2\)+n+3n+3
=n(n+1)+3(n+1)
=(n+3)(n+1)
Vì n lẻ => n + 3 chẵn ; n + 1 chẵn
Mà n + 1 hoặc n + 3 chia hết cho 2 vì 2 số đều chẵn(1)
Lại có (n + 1)(n + 3) chia hết cho 4 vì đây là tích của 2 số chẵn liên tiếp(2)
Từ (1) và (2) ⇒(n+1)(n+3)⋮(2.4)=8
Vậy n\(^2\)+4n+3⋮8<=> n lẻ
Ta có: \(\left(4n-3\right)^2-5^2=\left(4n-3+5\right)\left(4n-3-5\right)\)
\(=\left(4n+2\right)\left(4n-8\right)\)
\(=8\left(2n+1\right)\left(n-2\right)\)
Vậy \(\left(4n-3\right)^2-25\)chia hết cho 8
Áp dụng hằng đẳng thứ số 3 ta dc :
\(\left(4n-3\right)^2-25\)
\(=\left(4n-3\right)^2-5^2\)
\(=\left(4n-3-5\right)\left(4n-3+5\right)\)
\(=\left(4n-8\right)\left(4n-2\right)\)
Thanks nha