Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì p,q là 2 SNT >5
Suy ra p,q là số lẻ
Suy ra p,q chia hết cho 2
Suy ra p^4,q^4 chia hết cho 4
Suy ra p^4+2019q^4 chia hết cho 4 (1)
Mặt khác: Xét 5 TH 5k, 5k+1, 5k+2, 5k+3, 5k+4
Suy ra p^4+2019q^4 chia hết cho 5 (2)
Mà (5;4)=1 (3)
Từ (1), (2) và (3) suy ra đpcm
cảm ơn bn nhiều nha nhưng cách này mk làm r mk cần cách khac nhanh hơn
+)Ta có : x4 + y4 < x4 + x3y + x2y2 + xy3 + y4
Mà x > y > 1 ⟹ x - y > 0
⟹ ( x - y ) ( x4 + y4 ) < ( x - y ) ( x4 + x3y + x2y2 + xy3 + y4 ) ( * )
+)Ta có : ( x - y ) ( x4 + x3y + x2y2 + xy3 + y4 )
= x ( x4 + x3y + x2y2 + xy3 + y4 ) - y ( x4 + x3y + x2y2 + xy3 + y4 )
= x5 + x4y + x3y2 + x2y3 + xy4 - x4y - x3y2 - x2y3 - xy4 - y5
= x5 - y5
⟹ ( x - y ) ( x4 + x3y + x2y2 + xy3 + y4 ) = x5 - y5 ( ** )
Từ ( * ) ; ( ** )
⟹ ( x - y ) ( x4 + y4 ) < x5 - y5
Mà x5 - y5 < x5 + y5
⟹ ( x - y ) ( x4 + y4 ) < x5 - y5
⟹ ( x - y ) ( x4 + y4 ) < x - y
⟹ x4 + y4 < 1 ( đpcm )
Ta có: -20 = -20
<=> 25 - 45 = 16 - 36
=> \(5^2-2.5.\frac{9}{2}=4^2-2.4.\frac{9}{2}\)
Cộng cả 2 vế với \(\left(\frac{9}{2}\right)^2\)để xuất hiện hằng đẳng thức:
\(5^2-2.5.\frac{9}{2}+\left(\frac{9}{2}\right)^2=4^2-2.4+\frac{9}{2}+\left(\frac{9}{2}\right)^2\)
<=> \(\left(5-\frac{9}{2}\right)^2=\left(4-\frac{9}{2}\right)^2\)
=> \(5-\frac{9}{2}=4-\frac{9}{2}\)
=> 4 = 5
Chứng minh:4 = 5
-->Ta có
-20 = -20
<=> 25 - 45 = 16 - 36
=> 5^2 - 2.5.9/ 2 = 4^2 - 2.4.9/2
Cộg cả 2 vế với (9/2)^2 để xuất hiện hằg đẳg thức :
5^2 - 2.5.9/2 + (9/2)^2 = 4^2 - 2.4.9/2 + (9/2)^2
<=> (5 - 9/2)^2 = (4 - 9/2 )^2
=> 5 - 9/2 = 4 - 9/2
=> 5 = 4