K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2023

\(A=5+5^2+5^3+5^4+...+5^{11}+5^{12}\)

\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{11}+5^{12}\right)\)

\(=\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^{10}\left(5+5^2\right)\)

\(=30\left(1+5^2+...+5^{10}\right)⋮30\)

a: Sửa đề: S=5+5^2+...+5^2006

5S=5^2+5^3+...+5^2007

=>4S=5^2007-5

=>S=(5^2007-5)/4

b: S=5+5^4+5^2+5^5+...+5^2003+5^2006

=5(1+5^3)+5^2(1+5^3)+...+5^2003(1+5^3)

=126(5+5^2+...+5^2003) chia hết cho 126

11 tháng 8 2023

a/

\(\dfrac{2n+9}{n+1}=\dfrac{2\left(n+1\right)+7}{n+1}=2+\dfrac{7}{n+1}\)

\(\Rightarrow n+1=\left\{-7;-1;1;7\right\}\Rightarrow n=\left\{-8;-2;0;6\right\}\)

b/

\(\dfrac{3n+5}{n-1}=\dfrac{3\left(n-1\right)+8}{n-1}=3+\dfrac{8}{n-1}\)

\(\Rightarrow n-1=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)

\(\Rightarrow n=\left\{-7;-3;-1;0;2;5;9\right\}\)

29 tháng 12 2023

a; a - b ⋮ 6

    a - b + 12b ⋮ 6

   a + 11b ⋮ 6 (đpcm)

b;  a - b ⋮ 6

     a -  b  - 12a ⋮ 6

          -11a - b ⋮ 6

        -(11a + b) ⋮ 6

         11a + b    ⋮ 6 (đpcm)

 

29 tháng 12 2023

Em cảm ơn cô ạ

 

16 tháng 8 2017

bài 4 à bà

6 tháng 1 2022

TL:

Ta có:

10 có mũ bao nhiêu đi nữa, thì + 109 hay 108 +..v.v

Thì số cuối của dãy số vẫn băng 0 nên

=> 109+108+107 chia hết cho 2

Học Tốt👍

5 tháng 5 2020

\(S=4+3^2+3^3+...+3^{223}=3^0+3^1+3^2+3^3+...+3^{223}\)

=> \(3S=3+3^2+3^3+3^4+...+3^{224}\)

=> \(3S-S=3^{224}-1\)

=> \(S=\frac{3^{224}-1}{2}=\frac{\left(3^8\right)^{28}-1}{2}\)là số tự nhiên 

Ta có: \(\left(3^8\right)^{28}-1⋮\left(3^8-1\right)\)

mà \(3^8-1=6560=41.160⋮41\) 

=> \(\left(3^8\right)^{28}-1⋮41;\left(41;2\right)=1\)

=> \(S=\frac{\left(3^8\right)^{28}-1}{2}\) chia hết cho 41.

5 tháng 5 2020

Thank nha !

😊😊😊😊

8 tháng 8 2023

a, Ta có : \(\text{n + 5 = (n - 1)+6}\)

Vì \(\text{(n-1) ⋮ n-1}\)

Nên để \(\text{n+5 ⋮ n-1}\) `n-1`

Thì \(\text{6 ⋮ n-1}\) 

\(\Rightarrow\) \(\text{n - 1 ∈ Ư(6)}\)

\(\Rightarrow\) \(\text{n - 1 ∈}\) \(\left\{\text{±1;±2;±3;±6}\right\}\)

\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{0;-1;-2;-5;2;3;4;7}\right\}\) \(\text{( TM )}\)

\(\text{________________________________________________________}\)

b, Ta có : \(\text{2n-4 = (2n+4)- 8 = 2(n+2) - 8}\)

Vì \(\text{2(n+2) ⋮ n+2}\)

Nên để \(\text{2n-4 ⋮ n+2}\)

Thì \(\text{8 ⋮ n+2}\)

\(\Rightarrow\) \(\text{n + 2 ∈ Ư(8)}\)

\(\Rightarrow\) \(\text{n + 2 ∈}\) \(\left\{\text{±1;±2;±4;±8}\right\}\)

\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{-3;-4;-6;-10;-1;0;2;6}\right\}\) ( TM )

\(\text{_________________________________________________________________ }\)

c, Ta có :\(\text{ 6n + 4 = (6n + 3) +1 = 3(2n+1) + 1}\)

Vì \(\text{3(2n+1) ⋮ 2n+1}\)

Nên để\(\text{ 6n+4 ⋮ 2n+1}\)

Thì \(\text{1 ⋮ 2n+1}\)

\(\Rightarrow\) \(\text{2n + 1 ∈ Ư(1)}\)

\(\Rightarrow\) \(\text{2n + 1 ∈}\) \(\left\{\text{±1}\right\}\)

\(\Rightarrow\) \(\text{2n ∈}\) \(\left\{\text{-2;0}\right\}\)

\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{-1;0}\right\}\) ( TM )

\(\text{_______________________________________}\)

Ta có : \(\text{3 - 2n = -( 2n - 3 ) = -( 2n + 2 ) + 5 = -2( n+1)+5}\)

Vì \(\text{-2(n+1) ⋮ n+1}\)

Nên để \(\text{3-2n ⋮ n+1}\)

Thì\(\text{ 5 ⋮ n + 1}\)

\(\Rightarrow\) \(\text{n + 1 ∈}\) \(\left\{\text{±1;±5}\right\}\)

\(\Rightarrow\) \(\text{n ∈}\) \(\text{-2;-6;0;4}\) ( TM )