K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2015

=\(3^n.\left(3^1+3^2+3^3+...+3^{100}\right)=3^n\left(3^{101}-1\right)=3^{101n}-3^n\)

1 tháng 4 2020

Đề sai thì phải bạn ơi,mình thay đổi đề thành chứng minh \(5^{n+3}-2^{n+3}+5^{n+2}-3^{n+1}⋮60\) nhưng mình thử lại không đúng bạn ạ,bạn thử sửa lại xem sao nhé !

4 tháng 10 2018
25 tháng 9 2017

Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3

=> ĐPCM;

3 tháng 10 2019

A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1 = 3 n . 27 + 3 + 2 n + 1 . 4 + 2 = 3 n .30 + 2 n .6 = 6. 3 n .5 + 2 n ⋮ 6

25 tháng 5 2020

kmmdjkxmcmkjkdkddfffdfdg

25 tháng 5 2020

Mình nghĩ đề là 33n+1

33n+2+5.33n+1 

33n.32+5.33n.2

33n.9+33n.10

=>33n.19\(⋮\)19

AH
Akai Haruma
Giáo viên
3 tháng 3 2020

Lời giải:

$11.5^{2n}+2^{3n+2}+2^{3n+1}=11.25^n+8^n.4+8^n.2=11.25^n+6.8^n$

Vì $25\equiv 8\pmod {17}$

$\Rightarrow 11.5^{2n}+2^{3n+2}+2^{3n+1} =11.25^n+6.8^n\equiv 11.8^n+6.8^n\equiv 17.8^n\equiv 0\pmod {17}$

Hay $11.5^{2n}+2^{3n+2}+2^{3n+1}\vdots 17$

Hay $

3 tháng 3 2020

Này Akai Haruma, cho mk hỏi mod 17 nghĩa là gì vậy