\(3^{2k+1}\) chia 4 dư 3 \(\left(k\in N\right)\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Các bạn có thấy lời giải này có vấn đề không ạ? Nếu có thì chữa lại giúp mình ạ. Các bạn đọc kĩ nhé, mình nghĩ là có ... Đề bài: Chứng minh rằng với mọi số nguyên dương \(n\ge3\) thì: \(2^n>2n+1\)   (1)                     ( chứng minh bằng phương pháp quy nạp toán học)Giải: Với n=3 thì 2^3 = 8 , 2n+1 = 2.3+1=7 . Rõ ràng vế trái lớn hơn vế phải. Vậy (1) đúng với n=3 .Giả sử (1)...
Đọc tiếp

Các bạn có thấy lời giải này có vấn đề không ạ? Nếu có thì chữa lại giúp mình ạ. Các bạn đọc kĩ nhé, mình nghĩ là có ...

 Đề bài: Chứng minh rằng với mọi số nguyên dương \(n\ge3\) thì: \(2^n>2n+1\)   (1)  

                   ( chứng minh bằng phương pháp quy nạp toán học)

Giải:

 Với n=3 thì 2^3 = 8 , 2n+1 = 2.3+1=7 . Rõ ràng vế trái lớn hơn vế phải. Vậy (1) đúng với n=3 .

Giả sử (1) đúng với n=k \(\left(k\in N,k\ge3\right)\) , tức là:

\(2^k>2k+1\)

Ta phải chứng minh \(2^{k+1}>2\left(k+1\right)+1\) hay \(2^{k+1}>2k+3\) (2)

Thật vậy: 

\(2^{k+1}>2.2^k\) , mà \(2^k>2k+1\) (theo giả thiết quy nạp)

Do đó: \(2^{k+1}>2\left(2k+1\right)=\left(2k+3\right)+\left(2k-1\right)>2k+3\) ( Vì 2k-1 > 0 )

Vậy (2) đúng với mọi \(k\ge3\)

 => \(2^n>2n+1\) với mọi số nguyên dương n và \(n\ge3\)

 

 

1
3 tháng 5 2017

sai:2k+1>2.2k

       2k+1=2.2k

sửa lại thì có thể đúng :v

6 tháng 8 2016

\(P=12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{15}+1\right)\)

\(=\frac{1}{2}\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(=\frac{1}{2}\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(=\frac{1}{2}\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(=\frac{1}{2}\left(5^{16}-1\right)\left(5^{16}+1\right)\)

\(\frac{1}{2}\left(5^{32}+1\right)=\frac{5^{32}+1}{2}\)

 

6 tháng 8 2016

a)

 Ta có

a chia 5 dư 4

=> a=5k+4 ( k là số tự nhiên )

\(\Rightarrow a^2=\left(5k+4\right)^2=25k^2+40k+16\)

Vì 25k^2 chia hết cho 5

    40k chia hết cho 5

    16 chia 5 dư 1

=> đpcm

2) Ta có

\(12=\frac{5^2-1}{2}\)

Thay vào biểu thức ta có

\(P=\frac{\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)}{2}\)

\(\Rightarrow P=\frac{\left[\left(5^2\right)^2-1^2\right]\left[\left(5^2\right)^2+1^2\right]\left(5^8+1\right)}{2}\)

\(\Rightarrow P=\frac{\left[\left(5^4\right)^2-1^2\right]\left[\left(5^4\right)^2+1^2\right]}{2}\)

\(\Rightarrow P=\frac{5^{16}-1}{2}\)

3)

\(\left(a+b+c\right)^3=\left(a+b\right)^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2+c^3\)

\(=a^3+b^3+c^2+3ab\left(a+b\right)+3\left(a+b\right)c\left(a+b+c\right)\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left(ab+ca+cb+c^2\right)\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

 

4 tháng 1 2019

ae ơi đề bài lại như này nhé chứng minh a 1 + a2 +....+a99 <1

4 tháng 1 2019

\(a_k=\frac{2k+1}{k^2\left(k+1\right)^2}=\frac{k^2+2k+1-k^2}{k^2\left(k+1\right)^2}=\frac{\left(k+1\right)^2}{k^2\left(k+1\right)^2}-\frac{k^2}{k^2\left(k+1\right)^2}=\frac{1}{k^2}-\frac{1}{\left(k+1\right)^2}\)

\(S=\frac{1}{1^2}-\frac{1}{\left(1+1\right)^2}+\frac{1}{2^2}-\frac{1}{\left(2+1\right)^2}+\frac{1}{3^2}-\frac{1}{\left(3+1\right)^2}+...+\frac{1}{99^2}-\frac{1}{\left(99+1\right)^2}\)

\(S=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{99^2}-\frac{1}{100^2}=1-\frac{1}{100^2}< 1\) ( đpcm ) 

... 

27 tháng 12 2015

ai tick cho mk mk tick lai cho

5 tháng 7 2016

xem lại câu a nhé bạn

5 tháng 11 2017

khó quá

27 tháng 3 2018

dễ mà cô nương

\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)

\(\left(a^2+ab+b^2\right)=\left\{\left(a+b\right)^2-ab\right\}\)

\(a^3-b^3=\left(a-b\right)\left(25-6\right)=19\left(a-b\right)\)

ta có 

\(a=-5-b\)

suy ra

\(a^3-b^3=19\left(-5-2b\right)\) " xong "

2, trên mạng đầy

3, dytt mọe mày ngu ab=6 thì cmm nó phải chia hết cho 6 chứ :)

4 . \(x^2-\frac{2.1}{2}x+\frac{1}{4}+\frac{1}{3}-\frac{1}{4}>0\) tự làm dcmm

5. trên mạng đầy

6 , trên mang jđầy 

AH
Akai Haruma
Giáo viên
1 tháng 10 2020

Lời giải:

Vì $f(x)$ chia $x-3$ dư $2$, $f(x)$ chia $x+4$ dư $9$ nên $f(3)=2; f(-4)=9$

Giả sử $f(x)$ chia $x^2+x-12$ được đa thức dư là $ax+b$

Khi đó: $f(x)=(x^2+x-12)(x^2+3)+ax+b$

$f(3)=(3^2+3-12)(3^2+3)+3a+b$

$\Leftrightarrow 2=3a+b(1)$

$f(-4)=[(-4)^2-4-12][(-4)^2+3)]-4a+b$

$\Leftrightarrow 9=-4a+b(2)$

Từ $(1);(2)\Rightarrow a=-1; b=5$

$f(x)=(x^2+x-12)(x^2+3)-x+5=x^4+x^3-9x^2+2x-31$

NV
2 tháng 1 2019

\(f\left(x\right)\) chia \(x+1\) dư 4 \(\Rightarrow f\left(x\right)=\left(x+1\right).P\left(x\right)+4\)

\(f\left(-1\right)=\left(-1+1\right)P\left(x\right)+4=4\)

Do \(\left(x+1\right)\left(x^2+1\right)\) là đa thức bậc 3 \(\Rightarrow\) phần dư của phép chia \(f\left(x\right)\) cho \(\left(x+1\right)\left(x^2+1\right)\) là bậc 2 có dạng \(ax^2+bx+c\)

\(\Rightarrow f\left(x\right)=\left(x+1\right)\left(x^2+1\right).Q\left(x\right)+ax^2+bx+c\)(1)

\(f\left(-1\right)=a-b+c=4\) (2)

Biến đổi biểu thức (1):

\(f\left(x\right)=\left(x+1\right)\left(x^2+1\right).Q\left(x\right)+a\left(x^2+1\right)+bx+c-a\)

\(f\left(x\right)=\left(x^2+1\right)\left[\left(x+1\right).Q\left(x\right)+a\right]+bx+c-a\)

\(\Rightarrow f\left(x\right)\) chia \(x^2+1\)\(bx+c-a\)

\(\Rightarrow bx+c-a=2x+3\) \(\Rightarrow\left\{{}\begin{matrix}b=2\\c-a=3\end{matrix}\right.\)

Kết hợp (2) ta được: \(\left\{{}\begin{matrix}b=2\\c-a=3\\a-b+c=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}\\b=2\\c=\dfrac{9}{2}\end{matrix}\right.\)

Vậy phần dư cần tìm là \(\dfrac{3}{2}x^2+2x+\dfrac{9}{2}\)

2 tháng 1 2019

Theo Bơdu, ta có:

\(f\left(x\right):\left(x+1\right)\) dư 4

\(\Rightarrow f\left(-1\right)=4\)

Vì đa thức chia \(\left(x+1\right)\left(x^2+1\right)\) có bậc 3 nên đa thức dư có bậc \(\le2\). Đặt đa thức dư có dạng \(ax^2+bx+c\)

Gọi \(P\left(x\right)\) là đa thức thương. Ta có:

\(f\left(x\right)=\left(x+1\right)\left(x^2+1\right)P\left(x\right)+ax^2+bx+c\)

\(=\left(x+1\right)\left(x^2+1\right)P\left(x\right)+ax^2+a-a+bx+c\)

\(=\left(x+1\right)\left(x^2+1\right)P\left(x\right)+a\left(x^2+1\right)+bx+c-a\)

\(=\left(x^2+1\right)\left[P\left(x\right).\left(x+1\right)+a\right]+bx-a+c\)

\(f\left(x\right):\left(x^2+1\right)\)\(2x+3\)

\(\Rightarrow bx+c-a=2x+3\)

\(\Rightarrow\left\{{}\begin{matrix}b=2\\c-a=3\end{matrix}\right.\)

Lại có: \(f\left(-1\right)=ax^2+bx+c=4\)

\(\Leftrightarrow a-b+c=4\Leftrightarrow a+c-2=4\)

\(\Leftrightarrow a+c=6\)

\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}\\b=\dfrac{9}{2}\end{matrix}\right.\)

Vậy đa thức dư là \(\dfrac{3}{2}x^2+2x+\dfrac{9}{2}\)