Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=1+3+3^2+.....+3^{10}⋮4\)
\(=\left(1+3\right)+\left(3^2+3^3\right)+.......+\left(3^9+3^{10}\right)\)
\(=\left(1+3\right)+\left(3^2\cdot1+3^2\cdot3\right)+.....+\left(3^9\cdot1+3^9\cdot3\right)\)
\(=\left(1+3\right)+3^2\left(1+3\right)+....+3^9\left(1+3\right)\)
\(=4\cdot1+3^2\cdot4+.......+3^9\cdot4\)
\(=4\cdot\left(1+3^2+.....+3^9\right)⋮4\)
Do đó A \(⋮\) 4
b) \(B=16^5+2^{15}⋮33\)
Ta có \(B=16^5+2^{15}\)
\(=\left(2^4\right)^5+2^{15}\)
\(=2^{20}+2^{15}\)
\(=2^{15}\cdot2^5+2^{15}\cdot1\)
\(=2^{15}\cdot\left(2^5+1\right)\)
\(=2^5\cdot\left(32+1\right)\)
\(=2^{15}\cdot33⋮33\)
Do đó \(B⋮33\)
\(\left(7a+3b\right)⋮23\Leftrightarrow17\left(7a+3b\right)⋮23\)(vì \(\left(17,23\right)=1\))
\(\Leftrightarrow\left(119a+51b\right)⋮23\Leftrightarrow\left(119a-5.23a+51-2.23b\right)⋮23\)
\(\Leftrightarrow\left(4a+5b\right)⋮23\)
Do ta biến đổi tương đương nên điều ngược lại cũng đúng.
\(S=3+3^2+3^3+...+3^{1998}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{1997}+3^{1998}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{1997}\left(1+3\right)\)
\(=4\left(3+3^3+...+3^{1997}\right)⋮2\)
\(S=3+3^2+3^3+...+3^{1998}\)
\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{1996}+3^{1997}+3^{1998}\right)\)
\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{1996}\left(1+3+3^2\right)\)
\(=13\left(3+3^4+...+3^{1996}\right)⋮13\).
Mà \(\left(2,13\right)=1\)nên \(S\)chia hết cho \(2.13=26\).
Xét 3 số tự nhiên liên tiếp \(2020^{2021}-1;2020^{2021};2020^{2022}\) luôn có 1 số chia hết cho 3
Mà \(2020\equiv1\left(mod3\right)\Rightarrow2020^{2021}\equiv1\left(mod3\right)\)
Khi đó một trong 2 số \(2020^{2021}-1;2020^{2021}+1\) chia hết cho 3
=> đpcm
Lời giải:
Ta có:
\(A=2+2^2+2^3+....+2^9\)
\(A=(2+2^2+2^3)+(2^4+2^5+2^6)+(2^7+2^8+2^9)\)
\(A=2(1+2+2^2)+2^4(1+2+2^2)+2^7(1+2+2^2)\)
\(A=2.7+2^4.7+2^7.7\)
\(A=14(1+2^3+2^6)\Rightarrow A\vdots 14\)
Do đó ta có đpcm.
2 + 22 + 23 + ... + 28 + 29
=(2+22+23)+........+(27+28+29)
=2(1+2+22)+.....+27(1+2+22)
=2.7+......+27.7
=7(2+...+27)
=7.2(1+....+26)
=14(1+....+26)⋮14(đpcm)
https://hoc247.net/hoi-dap/toan-6/chung-minh-s-1-2-2-2-2-3-2-4-2-5-2-6-2-7-chia-het-cho-3-faq250754.html
S= \(1+2+2^2+...+2^7\)
2S= \(2\cdot\left(2+2^2+...+2^7\right)\)
2S= \(2^1+2^2+...2^8\)
1S= 2S - S = \(\left(2^1+2^2+...2^8\right)-\left(1+2+2^2+...+2^7\right)\)
1S= \(2^1+2^2+...+2^8-1-2-2^2-...-2^7\)
1S= \(2^8-1\)
1S= \(256-1\)
1S= 255
=> 1S chia hết cho 3
Mà 1S= S
=> S chia hết cho 3
Vậy S chia hết cho 3
1) Chứng minh rằng tích của ba số tự nhiên liên tiếp chia hết cho 6.
=> Gọi n, n+1, n+2( n \(\in\) \(N\)) là 3 số tự nhiên liên tiếp
- Trong hai số tự nhiên liên tiếp luôn có một số chẵn nên:
n.( n+1). ( n+2) \(⋮\)2.
- Trong ba số tự nhiên liên tiếp luôn có một thừa số \(⋮\) 3.
Mà 2 và 3 là hai số nguyên tố cùng nhau.
Suy ra: n.(n+1).(n+2) \(⋮\) 2 . 3 = 6(đpcm).
2) Chứng tỏ: 3n+3 + 3n+1 + 2n+3 + 2n+2 chia hêt cho 6.
=> 3n+3 + 3n+1 + 2n+3 + 2n+2
= 3n. 33 + 3n . 3 + 2n . 23 + 2n . 22
= 3n. (27+3) + 2n . ( 8+4)
= 6. ( 3n . 5 + 2n . 2)
= 6k với k = 3n . 5 + 2n+1
Mà 6k \(⋮\) 6 => ( 3n+3 + 3n+1+ 2n+3 + 2n+2) \(⋮\) 6(đpcm).
3) a) ( 6100 - 1) \(⋮\) 5
b) 2120 - 1110 chia hết cho cả 2 và 5
a) ( 6100 - 1) \(⋮\)5
=> Số 6100 có chữ số tận cùng là 6.
Nên 6100 - 1 là số có chữ số tận cùng là 5( 6-1=5)
=> ( 6100 - 1) \(⋮\)5(đpcm).
b) 2120 - 1110 chia hết cho cả 2 và 5.
=> Số 2120 có chữ số tận cùng là 1.
Số 1110 có chữ số tận cùng cũng là 1.
Nên 2120 - 1110 là số có chữ số tận cùng là 0.
=> 2120 - 1110 chia hết cho 2 và 5(đpcm).
4) Chứng minh rằng:
a) ( 450+108+180) \(⋮\)9
b) ( 1350 +735+255) \(⋮\)5
c) ( 32624+2016) \(⋮\)4
a) ( 450+108+180) \(⋮\)9
=> Vì 450 \(⋮\) 9; 108 \(⋮\) 9; 180 \(⋮\)9
Nên ( 450+108+180) \(⋮\)9.
b) ( 1350+735+255) \(⋮\)5
=> Vì 1350 \(⋮\) 5; 735 \(⋮\)5; 255 \(⋮\)5
Nên ( 1350+735+255) \(⋮\)5.
c) ( 32624 + 2016) \(⋮\) 4
=> Vì 32624 \(⋮\)4; 2016 \(⋮\)4
Nên ( 32624 + 2016) \(⋮\)4.
Đây là câu trả lời của mình, mình chúc bạn học tốt!
a) C=\(\left(1+3+3^2\right)+....+\left(3^9+3^{10}+3^{11}\right)\)
=13+.....+3^11 chia het cho 13
nen C=1+3+...+3^11 chia het cho 13
1,
a, Để \(\frac{8}{x+2}\) nhận giá trị là số tự nhiên \(\Rightarrow\)\(8⋮x+2\Rightarrow x+2\in\text{Ư}\left(8\right)=\left\{1;2;4;8\right\}\)
\(\Rightarrow x\in\left\{-1;0;2;6\right\}\)
Vì \(x\in N\Rightarrow x\in\text{ }\left\{0;2;6\right\}\)
Vậy \(x\in\left\{0;2;6\right\}\)
b, Để \(\frac{x+3}{x+1}\) nhận giá trị là số tự nhiên\(\Rightarrow\left\{{}\begin{matrix}x+3⋮x+1\\x+1⋮x+1\end{matrix}\right.\Rightarrow x+3-x+1⋮x+1\Rightarrow2⋮x+1\)
\(\Rightarrow x+1\in\text{Ư}\left(2\right)=\left\{1;2\right\}\)\(\Rightarrow x\in\left\{0;1\right\}\)
Vậy \(x\in\left\{0;1\right\}\)
- Bài 2:
b) S = 1 + 2 + 22 +.... + 211
= (1+23) + (2 + 24) +..... + (28+ 211)
= (1+23) + 2(1+23)+....+28(1+23)
= 9 + 2.9 + .... + 28.9
= 9.(1+2+...+28) ⋮ 9
Vậy S ⋮ 9
\(3^{2023}-3^{2021}=3^{2021}\left(3^2-1\right)=3^{2021}\cdot8⋮8\)