Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để \(\frac{2x+3}{4x-5}=0\)
=> 2x + 3 = 0
x = -3/2
b) Để \(\frac{\left(x-1\right)\left(x+2\right)}{x^2-4x+3}=\frac{\left(x-1\right).\left(x+2\right)}{\left(x-3\right).\left(x-1\right)}=\frac{x+2}{x-3}=0\)
=> x + 2 = 0=> x = -2
c) để \(\frac{x^2-1}{x^2-2x+1}=\frac{\left(x-1\right).\left(x+2\right)}{\left(x-1\right)^2}=\frac{x+2}{x-1}=0\)
=> x + 2 = 0 => x = -2
d) để \(\frac{x^2-4}{x^2+3x-10}=\frac{\left(x+2\right).\left(x-2\right)}{\left(x-2\right).\left(x+5\right)}=\frac{x+2}{x+5}=0\)
=> ...
e) để \(\frac{x^3-16x}{x^3-3x^2-4x}=\frac{x.\left(x-4\right).\left(x+4\right)}{x.\left(x-4\right).\left(x+1\right)}=\frac{x+4}{x+1}=0\)
=> ....
a) MTC : \(\left(x+1\right)\left(x^2-x+1\right)\)
Quy đồng :
\(\frac{x-1}{x^3+1}=\frac{x-1}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(\frac{2x}{x^2-x+1}=\frac{2x\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(\frac{2}{x+1}=\frac{2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
b ) MTC : \(10x\left(2y-x\right)\left(2y+x\right)\)
\(\frac{7}{5x}=\frac{7.2.\left(2y-x\right)\left(2y+x\right)}{10x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{4}{x-2y}=\frac{-4.10x.\left(2y+x\right)}{10x\left(2y-x\right)\left(2y+x\right)}=\frac{-40x\left(2y+x\right)}{10x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{x-y}{8y^2-2x^2}=\frac{x-y}{2\left(4y^2-x^2\right)}=\frac{x-y}{2\left(2y-x\right)\left(2y+x\right)}=\frac{5x\left(x-y\right)}{10x\left(2y-x\right)\left(2y+x\right)}\)
c ) MTC : \(\left(x+2\right)^3\)
\(\frac{6x^2}{x^3+6x^2+12x+8}=\frac{6x^2}{\left(x+2\right)^3}\)
\(\frac{3x}{x^2+4x+4}=\frac{3x}{\left(x+2\right)^2}=\frac{3x\left(x+2\right)}{\left(x+2\right)^3}\)
\(\frac{2}{2x+4}=\frac{1}{x+2}=\frac{\left(x+2\right)^2}{\left(x+2\right)^3}\)
Bài 2: \(a,\frac{7x-1}{2x^2+6x}=\frac{7x-1}{2x\left(x+3\right)}=\frac{\left(7x-1\right)\left(x-3\right)}{2x\left(x+3\right)\left(x-3\right)}\)
\(\frac{5-3x}{x^2-9}=\frac{5-3x}{\left(x-3\right)\left(x+3\right)}=\frac{\left(5-3x\right)2x}{2x\left(x-3\right)\left(x+3\right)}\)
\(b,\frac{x+1}{x-x^2}=\frac{x+1}{x\left(1-x\right)}=-\frac{x+1}{x\left(x+1\right)}=-\frac{2\left(x-1\right)\left(x+1\right)}{2x\left(x-1\right)^2}\)
\(\frac{x+2}{2-4x+2x^2}=\frac{x+2}{2\left(x-1\right)^2}=\frac{2x\left(x+2\right)}{2x\left(x-1\right)^2}\)
\(c,\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{2x}{x^2+x+1}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{6}{x-1}=\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(d,\frac{7}{5x}=\frac{7.2\left(2y-x\right)\left(2y+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{4}{x-2y}=-\frac{4}{2y-x}=-\frac{4.2.5x\left(2x+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{x-y}{8y^2-2x^2}=\frac{x-y}{2\left(4y^2-x^2\right)}=\frac{x-y}{2\left(2y-x\right)\left(2y+x\right)}=\frac{5x\left(x-y\right)}{2.5x.\left(2y-x\right)\left(2y+x\right)}\)
\(a)\frac{2x-1}{5x-10}\) \(\text{Đ}K:x\ne2\)
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow x=\frac{1}{2}(TM)\)
\(b)\frac{x^2-x}{2x}\) \(\text{Đ}K:x\ne0\)
\(\Leftrightarrow x^2-x=0\)
\(\Leftrightarrow x.(x-1)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0(lo\text{ại})\\x=1(TM)\end{cases}}\)
\(c)\frac{2x+3}{4x-5}\) \(\text{Đ}K:x\ne\frac{5}{4}\)
\(\Leftrightarrow2x+3=0\)
\(\Leftrightarrow x=\frac{-3}{2}(TM)\)
\(d)\frac{(x-1).(x+2)}{(x-3).(x-1)}\) \(\text{Đ}K:\hept{\begin{cases}x\ne3\\x\ne1\end{cases}}\)
\(\Leftrightarrow(x-1).(x+2)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1(l\text{oại})\\x=-2(TM)\end{cases}}\)
gửi cho 4 câu trc
Ta có: \(\frac{x^2y+2xy^2+y^3}{2x^2+xy-y^2}\)
\(=\frac{x^2y+xy^2+xy^2+y^3}{2x^2+2xy-xy-y^2}\)
\(=\frac{xy\left(x+y\right)+y^2\left(x+y\right)}{2x\left(x+y\right)-y\left(x+y\right)}\)
\(=\frac{\left(x+y\right)\left(xy+y^2\right)}{\left(2x-y\right)\left(x+y\right)}=\frac{xy+y^2}{2x-y}\left(đpcm\right)\)
Ta có: \(\frac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\)
\(=\frac{x^2+xy+2xy+2y^2}{x^2\left(x+2y\right)-y^2\left(x+2y\right)}\)
\(=\frac{x\left(x+y\right)+2y\left(x+y\right)}{\left(x^2-y^2\right)\left(x+2y\right)}\)
\(=\frac{\left(x+2y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)\left(x+2y\right)}=\frac{1}{x-y}\left(đpcm\right)\)
a, \(A=\frac{5-7x}{x^2+x+1}-\frac{7}{3}\)
Để A xác định thì \(x^2+x+1\ne0\) \(\Leftrightarrow x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\ne0\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ne0\)
Mà \(\left(x+\frac{1}{2}\right)^2+\frac{3}{2}>0\text{ }\forall\text{ }x\)
⇒ A xác định với mọi x.(đpcm)
b, \(B=\frac{x+10}{4x^2+2x+3}-\frac{x^2-4}{2}\)
Để B xác định thì \(4x^2+2x+3\ne0\) \(\Leftrightarrow\left(2x\right)^2+2.2x.\frac{1}{2}+\frac{1}{4}+\frac{11}{4}\ne0\)
\(\Leftrightarrow\left(2x+\frac{1}{2}\right)^2+\frac{11}{4}\ne0\)
Mà \(\left(2x+\frac{1}{2}\right)^2+\frac{11}{4}>0\forall x\)
⇒ B xác định với mọi x.(đpcm)
a)Đkxđ x≠\(\frac{5}{4}\)
Ta có để \(\frac{2x+3}{4x-5}\)=0=>2x+3=0=>x=\(\frac{3}{2}\)(thỏa mãn)
b)Ta có \(x^2-4x+3=x^2-3x-x+3\)
=x(x-3)-(x-3)
=(x-1)(x-3)
=>Đkxđ x≠1,3
để bài b)=0 duy ra (x-1)(x-2)=0
=>x=1,x=2 đối chiếu đkxđ có x=2 (t/mãn)
c)phân thức tương đương:\(\frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)^2}\)
= \(\frac{x+1}{x-1}\)
=>Đkxđ x≠1
Để x+1/x-1=0=>x+1=0
=>x=-1(t/mãn)
d) phân thức tương đương
\(\frac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+5\right)}\)
=\(\frac{x+2}{x+5}\)=>x≠-5
để phân thức đạt 0 suy ra x+2=0
=>x=-2
e)phân thức tương đương
\(\frac{x\left(x-4\right)\left(x+4\right)}{x\left(x-4\right)\left(x+1\right)}\)
=\(\frac{x+4}{x+1}\)
Đkxđ x khác -1
Để phân thức đạt GT là 0 x+4=0=>x=-4
g)\(\frac{\left(x-1\right)\left(x+1\right)^2}{\left(x-1\right)\left(x^2+x+3\right)}\)
=\(\frac{\left(x+1\right)^2}{x^2+x+3}\)
vì\(x^2+x+3>0\)(Dễ dàng chứng minh)
=>xϵR
Để phân thức đạt gt là 0 => \(\left(x+1\right)^2=0=>x=-1\)
Tính chất cơ bản của phân thức , rút gọn phân thức
x^2-2x-3/x^2+x=(x+x)-(3x+3)/x(x+1)=x(x+1)-3(x+1)/x(x+1)=x-3/x
x^2-4x-3/x^2-x=(x^2-x)-(3x-3)/x(x-1)=x(x-1)-3(x-1)/x(x-1)=x-3/x
=>x^2-2x-3/x^2+x=x-3/x=x^2-4x+3/x^2-x