Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{1^3+2^3}=1+2\)
\(\Leftrightarrow\sqrt{1+8}=3\)
\(\Leftrightarrow\sqrt{9}=3\)
mà \(\sqrt{9}=\sqrt{3^2}=\left|3\right|=3\)
\(\Leftrightarrow3=3\)
\(\Rightarrow\sqrt{1^3+2^3}=1+2\)
mấy bài khác chị giải tương tự là ra.
a, \((\sqrt{3}-1)^2=4-2\sqrt{3}\)
VT=\((\sqrt{3}-1)^2\)
VT=\(3-2\sqrt{3}.1+1\)
VT=\(4-2\sqrt{3}\)
=> VT=VP
vậy .........
a) VT = \(\left(\sqrt{3}-1\right)^2\) = \(\left(\sqrt{3}\right)^2-2\sqrt{3}+1^2\) = \(3-2\sqrt{3}+1=4-2\sqrt{3}\) = VP
vậy \(\left(\sqrt{3}-1\right)^2=4-2\sqrt{3}\) (đpcm)
b) VT = \(\sqrt{4-2\sqrt{3}}-\sqrt{3}\) = \(\sqrt{\left(\sqrt{3}\right)^2-2\sqrt{3}.1+1^2}-\sqrt{3}\)
= \(\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}\) = \(\left|\sqrt{3}-1\right|-\sqrt{3}\) = \(\sqrt{3}-1-\sqrt{3}=-1\) = VP
vậy \(\sqrt{4-2\sqrt{3}}-\sqrt{3}=-1\)(đpcm)
\(a.\left(\sqrt{3}-1\right)^2=4-2\sqrt{3}\) ( sửa đề )
\(VP=4-2\sqrt{3}=3-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2=VT\)
⇒ ĐPCM.
\(b.\left(\sqrt{3}+1\right)^2=4+2\sqrt{3}\) ( sửa đề )
\(VP=4+2\sqrt{3}=3+2\sqrt{3}+1=\left(\sqrt{3}+1\right)^2=VT\)
⇒ ĐPCM.
\(A=\sqrt{4+\sqrt{4+\sqrt{4}+...}}\\ \)>0
a)
\(A=\sqrt{4+A}\Leftrightarrow A^2=4+A\Leftrightarrow A^2-A-4=0\)
\(\Delta=1+16=17\)
\(A_1=\dfrac{1+\sqrt{17}}{2}< \dfrac{1+5}{2}=3\)
\(A_2=\dfrac{1-\sqrt{17}}{2}\)<0 loại
Vậy A < 3
b) Chứng minh quy nạp
(13+23+.....+n3)=(1+2+3+...+n)2=> KL
b).đặt \(A=\sqrt{1^3+2^3+3^3+...+n^3}\)
ta có hằng đẳng thức: \(x^3-x=\left(x-1\right)x\left(x+1\right)\)
\(1^3+2^3+3^3+...+n^3=1^3-1+2^3-2+3^3-3+...+n^3-n+\left(1+2+3+...+n\right)\)\(=0+1.2.3+2.3.4+...+\left(n-1\right)n\left(n+1\right)+\dfrac{n\left(n+1\right)}{2}\)(*)
Xét \(B=1.2.3+2.3.4+...+\left(n-1\right)n\left(n+1\right)\)
\(4B=1.2.3.4+2.3.4.4+...+\left(n-1\right)n\left(n+1\right).4=1.2.3.4+2.3.4.5-1.2.3.4+...+\left(n-1\right)n\left(n+1\right)\left(n+2\right)-\left(n-2\right)\left(n-1\right)n\left(n+1\right)\)
\(=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow B=\dfrac{\left(n-1\right)n\left(n+1\right)\left(n+2\right)}{4}\)
từ (*): \(1^3+2^3+...+n^3=\dfrac{\left(n-1\right)n\left(n+1\right)\left(n+2\right)}{4}+\dfrac{n\left(n+1\right)}{2}\)
\(=\dfrac{n\left(n+1\right)}{2}\left[\dfrac{\left(n-1\right)\left(n+2\right)}{2}+1\right]=\dfrac{n\left(n+1\right)}{2}.\dfrac{n^2+n-2+2}{2}=\left[\dfrac{n\left(n+1\right)}{2}\right]^2\)
do đó \(A=\sqrt{\left[\dfrac{n\left(n+1\right)}{2}\right]^2}=\dfrac{n\left(n+1\right)}{2}=1+2+...+n\)(đpcm)
a) Ta có :
4 - 2\(\sqrt{3}\) = 1 - 2.1.\(\sqrt{3}\) + 3 = 1 - 2.1.\(\sqrt{3}\) + (\(\sqrt{3}\))2 = (1 - \(\sqrt{3}\))2= (\(\sqrt{3}\) - 1)2
b) Áp dụng câu a ta có:
\(\sqrt{4-2\sqrt{3}}\) - \(\sqrt{3}\) = \(\sqrt{\left(\sqrt{3}-1\right)^2}\) - \(\sqrt{3}\) = (\(\sqrt{3}\) - 1) -\(\sqrt{3}\)
= \(\sqrt{3}\) - 1 - \(\sqrt{3}\) = -1
căn 13+23+33+43=căn 1+8+27+64=căn 100=10=1+2+3+4
=> căn 13+23+33+43=1+2+3+4
Lần sau đăng ít 1 thôi đăng nhiều ngại làm, bn đăng nhiều nên tui hướng dẫn sơ qua thôi tự làm đầy đủ vào vở
Bài 1:
Áp dụng BĐT AM-GM ta có:
\(a^4+b^4\ge2a^2b^2;b^4+c^4\ge2b^2c^2;c^4+a^4\ge2c^2a^2\)
Cộng theo vế 3 BĐT trên rồi thu gọn
\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)
Áp dụng tiếp BĐT AM-GM
\(a^2b^2+b^2c^2=b^2\left(a^2+c^2\right)\ge2b^2ac\)
Tương tự rồi cộng theo vế có ĐPCM
Bài 2:
Quy đồng BĐT trên ta có:
\(\frac{a^2}{b^2}+\frac{b^2}{a^2}-\frac{a}{b}-\frac{b}{a}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2\left(a^2+ab+b^2\right)}{a^2b^2}\ge0\) (luôn đúng)
Bài 4: Áp dụng BĐT AM-GM
\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)
\(\Rightarrow\frac{a^3+b^3}{ab}\ge\frac{ab\left(a+b\right)}{ab}=a+b\)
Tương tự rồi cộng theo vế
Bài 5: sai đề tự nhien có dấu - :v nghĩ là +
ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]
Ta có: VT = (√3 - 1)2 = (√3)2 - 2√3 + 1
= 3 - 2√3 + 1 = 4 - 2√3 = VP
Vậy (√3 - 1)2 = 4 - 2√3 (đpcm)