Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1:
a) C= 0
hay 3x+5+(7-x)=0
3x+(7-x)=-5
với 3x=-5
x= -5:3= \(x = { {-5} \over 3}\)
với 7-x=-5
x= 7+5= 12
=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12
mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha
=2x2-3/2x-3/2x+9/4+11/4=x2+x2-3/2x-3/2x+9/4+11/4=x2+x(x-3/2)-3/2(x-3/2)+11/4
=x2+(x-3/2)2+11/4
do x2+(x-3/2)2>0=>x2+(x-3/2)2+11/4>11/4>0 Vx
=>2x2-3x+5 vo nghiem
Ta có: \(2x^2-3x+5=\) \(2\left(x^2-\frac{3}{2}x+\frac{5}{2}\right)\)
\(=2\left(x^2-2x.\frac{3}{4}+\frac{9}{16}\right)+\frac{31}{8}\)
\(=2\left(x-\frac{3}{4}\right)^2+\frac{31}{8}\) (áp dụng hằng đẳng thức)
Vì \(\left(x-\frac{3}{4}\right)^2\ge0\) nên \(2\left(x-\frac{3}{4}\right)^2\ge0\)
\(\Rightarrow2\left(x-\frac{3}{4}\right)^2+\frac{31}{8}\ge\frac{31}{8}\)
Vậy đa thức \(2x^2-3x+5\) ko có nghiệm
Ta có:
Vì \(2x^2\ge0\forall x\)
Và \(3x\ge0\forall x\)
\(\Rightarrow2x^2+3x+5>0\forall x\)
Vậy đa thức \(2x^2+3x+5\) không có nghiệm
Đặt \(2x^2+3x+5=0\)
=>\(2\left(x^2+\dfrac{3}{2}x+\dfrac{5}{2}\right)=0\)
=>\(x^2+\dfrac{3}{2}x+\dfrac{5}{2}=0\)
=>\(x^2+2\cdot x\cdot\dfrac{3}{4}+\dfrac{9}{16}+\dfrac{31}{16}=0\)
=>\(\left(x+\dfrac{3}{4}\right)^2+\dfrac{31}{16}=0\)(vô lý)
=>Đa thức \(2x^2+3x+5\) không có nghiệm
Giải:
Ta có: A = 2\(x^2\) + 3\(x\) + 5
A = 2(\(x^2\) + \(x.\dfrac{3}{4}\)) + (\(\dfrac{3}{4}\)\(x\) + \(\dfrac{9}{4}\)) + 5
A = 2.\(x\)(\(x+\dfrac{3}{4}\)) + \(\dfrac{3}{2}\).(\(x+\dfrac{3}{4}\)) + \(\dfrac{31}{8}\)
A = 2(\(x+\dfrac{3}{4}\))(\(x\) + \(\dfrac{3}{4}\)) + \(\dfrac{31}{8}\)
A = 2.(\(x+\dfrac{3}{4}\))2 + \(\dfrac{31}{8}\)
Vì (\(x+\dfrac{3}{4}\))2 ≥ 0; ⇒ 2.(\(x+\dfrac{3}{4}\))2 ≥ 0
⇒ A ≥ \(\dfrac{31}{8}\) > 0
Vậy phương trình đã cho vô nghiệm (đpcm)