Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu 3a+4b chia hết cho 23 thì 8.(3a+4b)=24a+32b (1) chia hết cho 23
Ta xét biểu thức 3.(8a+3b)=24a+9b (2)
Lấy (1) trừ đi (2) được (24a+32b)-(24a+9b)=24a+32b-24a-9b=23b chia hết cho 23
Vậy 8.(3a+4b)-3.(8a+3b) chia hết cho 23
Mà 8.(3a+4b) chia hết cho 23
=> 3.(8a+3b) chia hết cho 23, mà (8;23)=1
=>8a+3b chia hết cho 23
Ngược lại thì bạn xét biểu thức 3.(8a+3b)-8.(3a+4b), làm tương tự như trên
a/ Ta có :
\(A=4+4^2+.....+4^{23}+4^{24}\)
\(=\left(4+4^2\right)+\left(4^3+4^4\right)+....+\left(4^{23}+4^{24}\right)\) (12 nhóm)
\(=4\left(4+4^2\right)+4^3\left(4+4^2\right)+.......+4^{23}\left(4+4^2\right)\)
\(=4.20+4^3.20+.....+4^{23}.20\)
\(=20\left(4+4^3+...+4^{23}\right)⋮20\)
\(\Leftrightarrow A⋮20\left(đpcm\right)\)
b/ Ta có :
\(A=4+4^2+4^3+........+4^{23}+4^{24}\)
\(=\left(4+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+.......+\left(4^{22}+4^{23}+4^{24}\right)\)
\(=4\left(1+4+4^2\right)+4^4\left(1+4+4^2\right)+....+4^{22}\left(1+4+4^2\right)\)
\(=4.21+4^4.21+....+4^{22}.21\)
\(=21\left(4+4^4+......+4^{22}\right)⋮21\)
\(\Leftrightarrow A⋮21\left(đpcm\right)\)
*A chia hết cho 20 : A có 24 lũy thừa.
Trước hết ta thấy rõ A chia hết cho 4 vì từng số hang của dãy số A chia hết cho 4
A có 24 lũy thừa nên ta chia thành 12 cặp lũy thừa
A = (4+4^2) + (4^3+4^4) + ...+ (4^23+4^24)
A = 4.(1+4) + 4^3.(1+4) + ...+ 4^23.(1+4)
A = 4.5 + 4^3.5 + .....+ 4^23.5
vậy A chia hết cho 5 và 4 nên A chia hết cho 20
*A chia hết cho 21 : A có 24 lũy thừa
Nhóm thành mỗi nhóm 3 lũy thừa ta được 8 nhóm lũy thừa
A = 4.(1+4+4^2) + ......+ 4^22.(1+4+4^2)
A = 4.21 + ......+4^22.21 => A chia hết 21
Vậy A chia hết cho 21.
*A chia hết cho 420 .
Ta có : A chia hết cho 20 và 21 mà 20 và 21 là nguyên tố cùng nhau nên
A chia hết cho 20.21 = 420 (Áp dụng: Một số đồng thời chia hết cho cả m và n. m và n đồng thời chỉ chia hết cho 1 và chính nó thì số đó chia hết cho tích mxn)
Vậy A chia hết cho 420 .
\(17x+17y⋮17\)\(\Leftrightarrow8x+12y+9x+5y⋮17\)\(\Rightarrow4\left(2x+3y\right)+9x+5y⋮17\)
Vì 2x+3y chia hết cho 17 => 9x+5y chia hết cho 17
Vậy với mọi x, y\(\in N\) và 2x+3y chia hết cho 17 thì 9x+5y chia hết cho 17
a) Vì\(\overline{abc}-\overline{deg}⋮13\Rightarrow\overline{abc}-\overline{deg}=13.k\Rightarrow\overline{abc}=\overline{deg}+13.k\left(k\in N\right)\)
Do vậy : \(\overline{abcdeg}=1000.\overline{abc}+\overline{deg}=1000.\left(\overline{deg}+13.k\right)+\overline{deg}=\left(1001.\overline{deg}+100.13.k\right)⋮13\)
b) \(\overline{abc}=100.a+10.b+c=98.a+7.b+\left(2a+3b+c\right)\)
Vậy nếu \(\overline{abc⋮7}\) thì (2a + 3b + c ) chia hết cho 7