Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$3^2\equiv -1\pmod 5\Rightarrow 3^{25}=(3^2)^{12}.3\equiv (-1)^{12}.3\equiv 3\pmod 5$
$\Rightarrow 2-3^{25}\equiv 2-3\equiv -1\pmod 5$
$\Rightarrow 2-3^{25}\not\vdots 5$.
Mà $3^{27}$ cũng không chia hết cho 5.
$\Rightarrow A$ không chia hết cho 5. Do đó $A$ không thể chia hết cho 15.
Bài 1:
\(A=\dfrac{3}{1.4}+\dfrac{5}{4.9}+\dfrac{7}{9.16}+\dfrac{9}{16.25}+\dfrac{11}{25.36}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{25}+\dfrac{1}{25}-\dfrac{1}{36}\)
\(=1-\dfrac{1}{36}=\dfrac{35}{36}\)
\(B=\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{100.103}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{103}\)
\(=1-\dfrac{1}{103}=\dfrac{102}{103}\)
\(C=\dfrac{3}{1.4}+\dfrac{6}{4.10}+\dfrac{9}{10.19}+\dfrac{12}{19.31}+\dfrac{15}{31.46}+\dfrac{18}{46.64}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{31}+\dfrac{1}{31}-\dfrac{1}{46}+\dfrac{1}{46}-\dfrac{1}{64}\)
\(=1-\dfrac{1}{64}=\dfrac{63}{64}\)
Bài 2:
\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{49.50}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{25}\right)\)
\(=\dfrac{1}{26}+\dfrac{1}{27}+\dfrac{1}{28}+...+\dfrac{1}{50}\left(đpcm\right)\)
a)
\(3^{21}-3^{18}\\ =3^{17}.\left(3^4-3\right)\\ =3^{17}.\left(81-3\right)\\ =3^{17}.78\)
Vì \(3^{17}.78⋮78\) nên \(3^{21}-3^{18}⋮78\) (đpcm)
Vậy...
b)
\(81^7-27^9-9^{13}\\
=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\\
=3^{28}-3^{27}-3^{26}\\
=3^{24}.\left(3^4-3^3-3^2\right)\\
=3^{24}.\left(81-27-9\right)\\
=3^{24}.45\)
Vì \(3^{24}.45⋮45\) nên \(81^7-27^9-9^{13}⋮45\) (đpcm)
Vậy...
\(1=1^3\)
\(3+5=8=2^3\)
\(7+9+11=27=3^3\)
\(13+15+17+19=64=4^3\)
\(21+23+25+27+29=125=5^3\)
\(\left(27^{21}-9^{31}-3^{60}\right)\)
\(=\left[\left(3^3\right)^{21}-\left(3^2\right)^{31}-3^{60}\right]\)
\(=\left(3^{63}-3^{62}-3^{60}\right)\)
\(=3^{60}\left(3^3-3^2-3\right)\)
\(=3^{60}.17\)
\(\Rightarrow\left(27^{21}-9^{31}-3^{60}\right)⋮17\)
\(\RightarrowĐPCM\)
\(\left(27^{21}-9^{31}-3^{60}\right)\)
\(=\left(3^3\right)^{21}-\left(3^2\right)^{31}-3^{60}\)
\(=\left(3^{63}-3^{62}-3^{60}\right)\)
\(=3^{60}\left(3^3-3^3-3\right)\)
\(=3^{60}.17\)
\(\Rightarrow\left(27^{21}-9^{31}-3^{60}\right)⋮17\)
Vậy (2721 - 931 - 360 ) \(⋮\)17
2715-921 chia hết cho (27-9) (vì 15, 21 là số lẻ)
=> ĐPCM