K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2016

2155555555555555555555555

13 tháng 2 2016

Ta có:

\(21^{39}+39^{21}=\left(21^{39}-1\right)+\left(39^{21}+1\right)\)

Vì  \(21^{39}-1=20\left(21^{38}+21^{37}+...+1\right)\)  chia hết cho \(20\) và  \(39^{21}+1=40\left(39^{20}-39^{19}+...+1\right)\)  chia hết cho  \(20\)

Do đó,  \(\left(21^{39}-1\right)+\left(39^{21}+1\right)\)  chia hết cho  \(20\)  hay \(21^{39}+39^{21}\) chia hết cho  \(20\)    \(\left(\text{*}\right)\)

Mặt khác, ta cũng có \(21^{39}+39^{21}=\left(21^{39}-3^{39}\right)+\left(39^{21}-3^{21}\right)+\left(3^{39}+3^{21}\right)\)

Do   \(21^{39}-3^{39}=18\left(21^{38}+...+3^{38}\right)\)  chia hết cho  \(9\)  \(\left(1\right)\)

       \(39^{21}-3^{21}=36\left(39^{20}+...+3^{20}\right)\)  chia hết cho  \(9\)  \(\left(2\right)\)

 và   \(3^{39}+3^{21}=3^{21}\left(3^{18}+1\right)=3\left(3^2\right)^{10}\left(3^{18}+1\right)\)  chia hết cho  \(9\)  \(\left(3\right)\)

Từ \(\left(1\right);\)  \(\left(2\right)\)  và \(\left(3\right)\) , suy ra  \(21^{39}+39^{21}\)  chia hết cho \(9\)   \(\left(\text{*}\text{*}\right)\)

Lại có:  \(\left(20;9\right)=1\)  \(\left(\text{*}\text{*}\text{*}\right)\)

Từ \(\left(\text{*}\right);\)  \(\left(\text{*}\text{*}\right)\)  và  \(\left(\text{*}\text{*}\text{*}\right)\)  suy ra \(21^{39}+39^{21}\)  chia hết cho  \(20.9=180\)

15 tháng 1 2017

 a,

n kog chia hết cho 3. Ta có: n = 3k +1 và n = 3k+2

TH1: n2 : 3 <=> (3k+1): 3 = (9k2+6k+1) : 3 => dư 1

TH2: n: 3 <=> (3k+2)2 : 3 = (9k2+12k+4) : 3 = (9k2+12k+3+1) : 3 => dư 1 

các phần sau làm tương tự.

9 tháng 8 2020

câu 1 đề đúng nha bn

còn đề câu 2 là chia hết cho 45

9 tháng 8 2020

Hoàng Việt Bách yêu cầu bn làm 1 câu hỏi khác theo yêu cầu mk ns trog phần tin nhắn nha !!! ! check tin nhắn bn ey !

5 tháng 4 2017

1)

a)251-1

=(23)17-1\(⋮\)23-1=7

Vậy 251-1\(⋮\)7

b)270+370

=(22)35+(32)35\(⋮\)22+32=13

Vậy 270+370\(⋮\)13

c)1719+1917

=(BS18-1)19+(BS18+1)17

=BS18-1+BS18+1

=BS18\(⋮\)18

d)3663-1\(⋮\)35\(⋮\)7

Vậy 3663-1\(⋮\)7

3663-1

=3663+1-2

=BS37-2\(⋮̸\)37

Vậy 3663-1\(⋮̸\)37

e)24n-1

=(24)n-1\(⋮\)24-1=15

Vậy 24n-1\(⋮\)15

13 tháng 8 2019

BS là gì vậy bạn???

21 tháng 10 2015

2009^2010đồng dư với 1 (theo mod 2010)