Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có 9^k + 5^k +7^k lun lẻ còn 10^k+8^k+6^k lun chẵn mà chẵn trừ lẽ ra lẽ nên k chia hết cho 2
b) 2001^n + 2003^n lun chẵn , 2002^n lun chẵn nên cộng lại chia hết cho 2
c) tạm thời chưa ra
Bài 1 : \(3^{n+2}\)\(-2^{n+2}\)+ \(3^n-2^n\)= \(\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
= \(3^n\)\(\left(3^2+1\right)\) \(-2^n\left(2^2+1\right)\)= \(3^n\times10-2^{n-1}\times10\)
= 10 \(\times\left(3^n+2^{n+1}\right)\)
chia hết cho 10
Bài 2 :
\(A=75.\left(4^{2004}+4^{2003}+...+4^2+4+1\right)+25\) =\(75+25+75.4.\left(4^{2003}+4^{2003}+....+4^2+4\right)\)
= \(100+300.\left(4^{2003}+4^{2003}+...+4^2+4\right)\)
chia het cho 100
\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(=3^n.27+3^n.3+2^n.8+2^n.4\)
\(=3^n\left(27+3\right)+2^n\left(8+4\right)\)
\(=3^n.30+2^n.12⋮6\left(dpcm\right)\)
\(3^{n+1}-2^{n+2}+3^n-2^n\)
\(=3^n\cdot10-2^n\cdot5\)
\(=3^n\cdot10-2^{n-1}\cdot10⋮10\)
3n+3 + 2n+3 + 3n+1 + 2n+1
= ( 3n+3 + 3n+1 ) + ( 2n+3 +2n+2 )
= 3n( 33 + 3 ) + 2n ( 23 + 22 )
= 3n(27 + 3) + 2n(8 + 4)
= 3n.30 + 2n.12
= 6( 3n.5 + 2n.2) chia hết cho 6 ( đpcm )
Ta thấy 2003^n+1 và 2003^n+2 là 2 số tự nhiên liên tiếp nên có 1 số chia hết cho 2
=> (2003^n+1) x (2003^n+2) chia hết cho 2 (1)
Xét 2003^n x (2003^n+1) x (2003^n+2)
Ta thấy 2003^n;2003^n+1 và 2003^n+2 là 2 số tự nhiên liên tiếp nên có 1 sô chia hết cho 3
=> 2003^n x (2003^n+1) x (2003^n+2) chia hết cho 3
Mà 2003^n ko chia hết cho 3
=> (2003^n+1) x (2003^n+2) chia hết cho 3 (2)
Từ (1) và (2) => (2003^n+1) x (2003^n+2) chia hết cho 6 ( vì 2 và 3 là 2 số nguyên tó cùng nhau )
k mk nha