K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2017

Ta thấy 2003^n+1 và 2003^n+2 là 2 số tự nhiên liên tiếp nên có 1 số chia hết cho 2

=> (2003^n+1) x (2003^n+2) chia hết cho 2 (1)

Xét 2003^n x (2003^n+1) x (2003^n+2)

Ta thấy 2003^n;2003^n+1 và 2003^n+2 là 2 số tự nhiên liên tiếp nên có 1 sô chia hết cho 3

=> 2003^n x (2003^n+1) x (2003^n+2) chia hết cho 3 

Mà 2003^n ko chia hết cho 3

=> (2003^n+1) x (2003^n+2) chia hết cho 3 (2)

Từ (1) và (2) => (2003^n+1) x (2003^n+2) chia hết cho 6 ( vì 2 và 3 là 2 số nguyên tó cùng nhau )

k mk nha

11 tháng 12 2015

a) ta có 9^k + 5^k +7^k lun lẻ còn 10^k+8^k+6^k lun chẵn mà chẵn trừ lẽ ra lẽ nên k chia hết cho 2

b) 2001^n + 2003^n lun chẵn , 2002^n lun chẵn nên cộng lại chia hết cho 2

c) tạm thời chưa ra

 

5 tháng 10 2019

hello minh anh ak 

5 tháng 10 2019

bitch

23 tháng 6 2015

Bài 1 : \(3^{n+2}\)\(-2^{n+2}\)\(3^n-2^n\)\(\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

 = \(3^n\)\(\left(3^2+1\right)\) \(-2^n\left(2^2+1\right)\)\(3^n\times10-2^{n-1}\times10\)

= 10 \(\times\left(3^n+2^{n+1}\right)\)

chia hết cho 10

Bài 2 : 

\(A=75.\left(4^{2004}+4^{2003}+...+4^2+4+1\right)+25\) =\(75+25+75.4.\left(4^{2003}+4^{2003}+....+4^2+4\right)\)

\(100+300.\left(4^{2003}+4^{2003}+...+4^2+4\right)\)

chia het cho 100

12 tháng 4 2018

ehdhfhdfh

23 tháng 10 2017

\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)

\(=3^n.27+3^n.3+2^n.8+2^n.4\)

\(=3^n\left(27+3\right)+2^n\left(8+4\right)\)

\(=3^n.30+2^n.12⋮6\left(dpcm\right)\)

\(3^{n+1}-2^{n+2}+3^n-2^n\)

\(=3^n\cdot10-2^n\cdot5\)

\(=3^n\cdot10-2^{n-1}\cdot10⋮10\)

13 tháng 8 2015

Triệu Đăng mới đổi tên thành Minh Triều đo bạn

3 tháng 1 2018

Bài này từ 2 năm trước rùi

29 tháng 1 2017

3n+3 + 2n+3 + 3n+1 + 2n+1

= ( 3n+3 + 3n+1 ) + ( 2n+3 +2n+2 )

= 3n( 33 + 3 ) + 2n ( 23 + 22 )

= 3n(27 + 3) + 2n(8 + 4)

= 3n.30 + 2n.12

= 6( 3n.5 + 2n.2) chia hết cho 6 ( đpcm )

29 tháng 1 2017

đáp án 6