Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Ghi chú: Muốn chứng minh hai số là nghịch đảo của nhau, ta chứng minh tích của hai số bằng 1.)
Đặt \(a=\sqrt{2006}-\sqrt{2005};b=\sqrt{2006}+\sqrt{2005}\)
Ta có
\(a=\sqrt{2006}-\sqrt{2005}=\dfrac{\left(\sqrt{2006}-\sqrt{2005}\right)\left(\sqrt{2006}+\sqrt{2005}\right)}{\sqrt{2006}+\sqrt{2005}}=\dfrac{1}{b}\)
\(\RightarrowĐfcm\)
Hai bài này áp dụng hằng đẳng thức \(a^2-b^2=\left(a-b\right)\left(a+b\right)\) bạn nhé
a)
\(\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)\)
\(=2^2-\sqrt{3}^2\)
\(=4-3\)
\(=1\)
b)
Hai số nghịch đảo nhau là 2 số có tích của chúng bằng 1
Ví dụ
\(\frac{a}{b}\) và \(\frac{b}{a}\) ( hai số nghịch đảo )
\(\frac{a}{b}.\frac{b}{a}=1\)
Ta có
\(\left(\sqrt{2006}-\sqrt{2005}\right)\left(\sqrt{2006}+\sqrt{2005}\right)\)
\(=\sqrt{2006}^2-\sqrt{2005}^2\)
\(=2006-2005\)
\(=1\)
=> Đpcm
a) \(\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=2^2-\left(\sqrt{3}\right)^2=4-3=1\)
b) Đặt \(x=\sqrt{2006}-\sqrt{2005},y=\sqrt{2006}+\sqrt{2005}\)
Ta có : \(\frac{1}{x}=\frac{1}{\sqrt{2006}-\sqrt{2005}}=\frac{\sqrt{2006}+\sqrt{2005}}{\left(\sqrt{2006}-\sqrt{2005}\right)\left(\sqrt{2006}+\sqrt{2005}\right)}\)
\(=\sqrt{2006}+\sqrt{2005}=y\)
Vì \(y=\frac{1}{x}\) nên hai số này là nghịch đảo của nhau
a) xét \(VT=\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=4-\sqrt{3}^2=4-3=1\)
mà \(VT=1\)
\(\Rightarrow VT=VP\left(đpcm\right)\)
b) (lí thuyết) :nếu 2 số nghịch đảo với nhau thì có tích bằng 1 và ngược lại,nếu 2 số có tích bằng 1 thì 2 số đó là nghịch đảo của nhau
Xét \(\left(\sqrt{2006}-\sqrt{2005}\right)\left(\sqrt{2006}+\sqrt{2005}\right)=2006-2005=1\)
\(\Rightarrow\left(\sqrt{2006}-\sqrt{2005}\right)và\left(\sqrt{2006}+\sqrt{2005}\right)\)là 2 số nghịch đảo với nhau(đpcm)
NHỚ TICK CHO MÌNH NHA !!
MÌNH TRẢ LỜI ĐẦU TIÊN ĐẤY
Ủa đề là j vậy bạn . @Nguyen Duc Hieu
Nếu là đề yêu cầu chứng minh ( vì trong sgk toán 9 có ) thì làm như sau :
Đề :
Chứng minh
a) (2 - √3)(2 + √3) = 1;
b) (√2006 - √2005) và (√2006 + √2005) là hai số nghịch đảo của nhau.
----------------------------------------------------------------------------------------------------------------------------------
a) \(\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=1\)
Ta biến đổi vế trái :
\(VT=\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=4+2\sqrt{3}-2\sqrt{3}-\sqrt{3^2}=4-3=1\)
b) \(\left(\sqrt{2006}-\sqrt{2005}\right)v\text{à}\left(\sqrt{2006}+\sqrt{2005}\right)\)
Ta có : Nếu : ( \(\sqrt{2006}-\sqrt{2005}\) )( \(\sqrt{2006}+\sqrt{2005}\) ) =1 thì (√2006 - √2005) và (√2006 + √2005) là hai số nghịch đảo của nhau.\(\left(x-\sqrt{11}\right)^2=0\)
\(\left(x-\sqrt{11}\right)=0\)
\(x=\sqrt{11}\)
\(\left(x-\sqrt{11}^2=0\right)\)
\(\left(x-\sqrt{11}\right)=0\)
\(x=\sqrt{11}\)
a, \(\Delta'=b'^2-ac=\left(-2\right)^2-1.\left(-m^2-3m\right)=4+m^2+3m\)
Để pt (1) có 2 nghiệm phân biệt thì \(\Delta'>0\Leftrightarrow m^2+3m+4>0\) (luôn đúng)
Vậy pt (1) luôn có 2 nghiệm phân biệt với mọi m
b, Theo vi ét ta có: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=-m^2-3m\end{matrix}\right.\)
Để 2 nghiệm là 2 số nghịch đảo của nhau \(\Leftrightarrow x_1x_2=1\)
\(\Rightarrow-m^2-3m=1\Leftrightarrow m^2+3m-1=0\Leftrightarrow\left[{}\begin{matrix}m=\frac{-3+\sqrt{13}}{2}\\m=\frac{-3-\sqrt{13}}{2}\end{matrix}\right.\)
Hằng đẳng thức a2 - b2 = (a - b).(a + b) <=> (a - b).(a + b) = a2 - b2
Lời giải:
Dễ thấy 2 PT trên đều có 2 nghiệm phân biệt.
Đối với PT $(1)$, nếu $x_1,x_2$ là 2 nghiệm của nó, áp dụng định lý Viet ta có:
\(\left\{\begin{matrix} x_1+x_2=3\\ x_1x_2=-m^2\end{matrix}\right.\)
\(\Rightarrow \frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{x_1x_2}=-\frac{3}{m^2}\); \(\frac{1}{x_1}.\frac{1}{x_2}=\frac{-1}{m^2}\)
Theo định lý Viet đảo, $\frac{1}{x_1}, \frac{1}{x_2}$ là nghiệm của PT:
\(x^2+\frac{3}{m^2}x-\frac{1}{m^2}=0\Leftrightarrow m^2x^2+3x-1=0\)
Do đó ta có đpcm.
VT = = 4 - 3 = 1 = VP
Vậy: 2 - 3 2 + 3 = 1