Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
các bạn có thể cho mình biết được không,đang cần gấp lắm.
S=5+5^2+5^3+5^4+5^5+5^6+...+5^2004
=(5+5^2+5^3+5^4)+(5^5+5^6+5^7+5^8)+...+(5^2001+5^2002+5^2003+5^2004)
=780+5^4(5+5^2+5^3+5^4)+...+5^2000(5+5^2+5^3+5^4)
=780(1+5^4+...+5^2000) chia hết cho 65
S=5+5^2+5^3+5^4+5^5+5^6+...+5^2004
=(5+5^2+5^3+5^4+5^5+5^6)+...+(5^1999+5^2000+5^2001+5^2002+5^2003+5^2004)
=19530+...+5^1998(5+5^2+5^3+5^4+5^5+5^6)
=19530(1+...+5^1998) chia hết cho 126
\(S=2+2^2+2^3+...+2^{2004}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2003}+2^{2004}\right)\)
\(=6+2^2.\left(2+2^2\right)+...+2^{2002}.\left(2+2^2\right)\)
\(=6.2^2+6+...+2^{2002}.6\)
\(=6.\left(1+2^2+...+2^{2002}\right)⋮6\)
\(\Rightarrow S⋮6\)
Ta có: \(S=2+2^2+2^3+...+2^{2004}\)
Nhóm từng 2 số hạng một:
\(\Leftrightarrow S=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2003}+2^{2004}\right)\)
\(\Leftrightarrow S=2\left(4+2\right)+2^3\left(4+2\right)+...+2^{2003}\left(4+2\right)\)
\(\Leftrightarrow S=6\left(2+2^3+...+2^{2003}\right)\)
\(\Leftrightarrow S⋮6\Rightarrow\left(ĐPCM\right)\)
P/s: Mình không chắc nhé! Cô mình cho giải một bài tương tự như thế này, và mình đã làm đúng. Nhưng không biết bài này thì sao!
\(A=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(=2.\left(1+2\right)+2^3.\left(1+2\right)+....+2^{59}.\left(1+2\right)\)
\(=3.\left(2+2^3+...+2^{59}\right)⋮3\)
Vậy....
\(B=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^7+5^8\right)\)
\(=\left(5+5^2\right)+5^2.\left(5+5^2\right)+...+5^6.\left(5+5^2\right)\)
\(=30.\left(1+5^2+...+5^6\right)⋮30\)
Bài 1 bạn kia giải rồi
2. Gọi d = ƯCLN(2n+5;3n+7) (\(d\inℕ^∗\) )
=> 2n+5 chia hết cho d ; 3n+7 chia hết cho d
=> 3.(2n+5) chia hết cho d ; 2.(3n+7) chia hết cho d
=> 6n+15 chia hết cho d ; 6n+14 chia hết cho d
=> (6n+15)-(6n+14) chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* nên d = 1
=> ƯCLN(2n+5;3n+7) = 1
Vậy 2n+5 và 3n+7 là hai số nguyên tố cùng nhau
3. Nếu x+2y chia hết cho 5
=> 3.(x+2y) chia hết cho 5
=> 3x+6y chia hết cho 5
Mà 10y chia hết cho 5
=> (3x+6y)-10y chia hết cho 5
=> 3x - 4y chia hết cho 5
=> ĐPCM