Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
VT = \(2\sqrt{2}\left(2-3\sqrt{3}\right)+\left(1-2\sqrt{2}\right)^2+6\sqrt{6}\)
\(=4\sqrt{2}-6\sqrt{6}+1-4\sqrt{2}+8+6\sqrt{6}=9\)=VP (đpcm)
\(VT=2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}\)
\(=2\sqrt{6}-4\sqrt{2}+1+4\sqrt{2}+8-2\sqrt{6}\)
\(=9=VP\)
a) \(VT=\sqrt{9-\sqrt{17}}.\sqrt{9+\sqrt{17}}=\sqrt{\left(9-\sqrt{17}\right)\left(9+\sqrt{17}\right)}\)
=\(\sqrt{9^2-\left(\sqrt{17}\right)^2}=\sqrt{81-17}=\sqrt{64}=8=VP\)
b) \(VT=2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}\)
=\(2\sqrt{6}-4\sqrt{2}+1+4\sqrt{2}+8-2\sqrt{6}=9=VP\)
Ta có VT: \(2\sqrt{2}.\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}\)
=\(2\sqrt{6}-4\sqrt{2}+1^2+4\sqrt{2}+\left(2\sqrt{2}\right)^2-2\sqrt{6}\)
=1+8
=9(bằng VP)
Chúc học tốt:))
Ta có:
2 2 3 - 2 + 1 + 2 2 2 - 2 6 = 2 6 - 4 2 + 1 + 4 2 + 8 - 2 6 = 1 + 8 = 9
= 2√6 - 4√2 + 1 + 4√2 + 8 - 2√6 = 1 + 8 = 9
Vế trái bằng vế phải nên đẳng thức được chứng minh.