Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy:
1/22<1/1*2; 1/3^2<1/2*3;...;1/2^11<1/10*11
=> tổng đó nhỏ hơn 1/1*2+1/2*3+...+1/10*11
= 1-1/2+1/2-1/3+...+1/10-1/11
=1-1/11<1
=> tổng đó nhỏ hơn 1
Toán tiểu học: dang phân số có tử số là hiệu của hai thừa số ở mẫu
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{98.99}+\frac{1}{99.100}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{1}-\frac{1}{100}\)
\(=\frac{99}{100}\)
\(1+^2+4^3+......+4^{10}+4^{11}\)
\(=\left(1+4\right)+\left(4^2+4^3\right)+.....+\left(4^{10}+4^{11}\right)\)
Nhận xét : Tất cả các tổng trong tổng trên đều chia hết cho 5. Vậy tổng \(1+^2+4^3+......+4^{10}+4^{11}\) chia hết cho 5
\(7+7^2+7^3+.....+7^{102}\)
\(=\left(7+7^2\right)+\left(7^3+7^4\right)+....+\left(7^{101}+7^{102}\right)\)
Nhận xét : Tất cả các tổng trong tổng trên đều chia hết cho 8. Vậy tổng \(7+7^2+7^3+.....+7^{102}\) chia hết cho 8
a, \(1+4+4^2+...+4^{11}\)
Đặt : \(S=1+4+4^2+...+4^{11}\)
Ta có : Số số hạng của dãy số S chính là số số hạng của dãy số cách đều từ 0 --> 11 mỗi số cách nhau 1 đơn vị
=> Số số hạng của S là : \(\frac{11-0}{1}+1=12\) ( số hạng )
Vậy ta có số nhóm là :
12 : 2 = 6 ( nhóm ) :
\(S=\left(1+4\right)+\left(4^2+4^3\right)+...+\left(4^{10}+4^{11}\right)\) ( 6 nhóm )
\(\Rightarrow S=\left(1+4\right)+4^2\left(1+4\right)+...+4^{10}\left(1+4\right)\)
\(\Rightarrow S=1.5+4^2.5+...+4^{10}.5\)
\(\Rightarrow S=\left(1+4^2+...+4^{10}\right).5\)
Mà : \(1+4^2+...+4^{10}\in N\Rightarrow S⋮5\)
---------
Tương tự để chứng minh S chia hết cho 21 ta có số nhóm là :
12 : 3 = 4 ( nhóm )
\(S=\left(1+4+4^2\right)+...+\left(4^9+4^{10}+4^{10}\right)\) ( 4 nhóm )
\(\Rightarrow S=\left(1+4+4^2\right)+...+4^9\left(1+4+4^2\right)\)
\(\Rightarrow S=1.21+...+4^9.21\)
\(\Rightarrow S=\left(1+...+4^9\right).21\)
Mà : \(1+...+4^9\in N\Rightarrow S⋮21\)
b, \(7+7^2+7^3+...+7^{102}\)
Đặt : \(M=7+7^2+7^3+...+7^{102}\)
Ta có : Số số hạng của dãy số M chính là số số hạng của dãy số cách đều từ 1 --> 102 mỗi số cách nhau 1 đơn vị
=> Số số hạng của M là : \(\frac{102-1}{1}+1=102\) ( số hạng )
Vậy có tất cả số nhóm là :
102 : 2 = 51 ( nhóm )
\(M=\left(7+7^2\right)+\left(7^3+7^4\right)+...+\left(7^{101}+7^{102}\right)\)
\(\Rightarrow M=\left(7+7^2\right)+7^2\left(7+7^2\right)+...+7^{100}\left(7+7^2\right)\)
\(\Rightarrow M=1.56+7^2.56+...+7^{100}.56\)
\(\Rightarrow M=\left(1+7^2+...+7^{100}\right).56\)
Vì : 56 = 8.7 . Mà : \(1+7^2+...+7^{100}\in N\Rightarrow M⋮8\)
đặt A=1+1/2 mu2+1/3 mu2+1/4 mu2+....+1/100 mu2
đặt B=1/2.3+1/3.4+...+1/99.100
=1/1.2+1/2.3+1/3.4+...+1/99.100
=1-1/2+1/2-1/3+...+1/99-1/100
=1-1/100<1 (1)
Mà 1<2(2)
A =1/1+1/2.2+1/3.3+...+1/100.100<1-1/2+1/2-1/3+...+1/99-1/100 (3)
từ (1),(2),(3) =>A<2
ủng hộ nhé
giup mk
Hình như sai đề bài đó