K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{x+z}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

\(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{x+z}

6 tháng 8 2020

Ta có 

\(\frac{x+y}{x+y+z}>\frac{x+y}{x+y+z+t};\frac{y+z}{y+z+t}>\frac{y+z}{x+y+z+t};\frac{z+t}{z+t+x}>\frac{z+t}{x+y+z+t};\frac{t+x}{t+x+y}>\frac{t+x}{x+y+z+t}\)

\(\Rightarrow LHS>2\) ( điều phải chứng minh )

9 tháng 10 2020

Ta có: \(x+\frac{1}{y}=y+\frac{1}{z}\Rightarrow x-y=\frac{1}{z}-\frac{1}{y}=\frac{y-z}{yz}\)(1)

\(y+\frac{1}{z}=z+\frac{1}{x}\Rightarrow y-z=\frac{1}{x}-\frac{1}{z}=\frac{z-x}{zx}\)(2)

\(z+\frac{1}{x}=x+\frac{1}{y}\Rightarrow z-x=\frac{1}{y}-\frac{1}{x}=\frac{x-y}{xy}\)(3)

Nhân vế theo vế ba đẳng thức (1), (2), (3), ta được: \(\left(x-y\right)\left(y-z\right)\left(z-x\right)=\frac{\left(x-y\right)\left(y-z\right)\left(z-x\right)}{x^2y^2z^2}\)

\(\Rightarrow\orbr{\begin{cases}\left(x-y\right)\left(y-z\right)\left(z-x\right)=0\left(^∗\right)\\x^2y^2z^2=1\end{cases}}\)

Từ (*) ta giả sử x - y = 0 thì x = y khi đó \(\frac{1}{y}=\frac{1}{z}\Rightarrow y=z\)suy ra x = y = z. Tương tự đối với y - z = 0; z - x = 0

Vậy x = y = z hoặc x2y2z2 = 1

Với x, y, z nguyên dương 

Ta có: \(\frac{x}{x+y}>\frac{x}{x+y+z}\)

          \(\frac{y}{y+z}>\frac{y}{x+y+z}\)

          \(\frac{z}{z+x}>\frac{z}{x+y+z}\)

\(\Rightarrow\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x+y+z}{x+y+z}=1\)(1)

Mặt khác \(\frac{x}{x+y}< 1\Rightarrow\frac{x}{x+y}< \frac{x+z}{x+y+z}\)

           \(\frac{y}{y+z}< \frac{y+x}{x+y+z}\)

           \(\frac{z}{z+x}< \frac{z+y}{x+y+z}\)

\(\Rightarrow\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}< 2\)(2)

Từ (1) và (2) => dpcm

14 tháng 1 2018

Có : x/x+y ; y/y+z ; z/z+x đều > 0

=> x/z+y + y/y+z + z/z+x > x/x+y+z + y/x+y+z + z/x+y+z = x+y+z/x+y+z = 1 (1)

Lại có : x,y,z > 0

=> 0 < x/x+y ; y/y+z ; z/z+x < 1

=> x/x+y + y/y+z + z/z+x < x+z/x+y+z + y+x/x+y+z + z+y/x+y+z = x+z+y+x+z+y/x+y+z = 2 (2)

Từ (1) và (2) => ĐPCM

Tk mk nha

11 tháng 8 2017

1 <  x /x+y + y /y+x+ z /z+x < 2

=> 1 < (x + y + z) / (2x + 2y + 2z)  < 2

=> 1 <  ( x + y + z) / 2 x ( x+ y +z)  < 2

=>  1 < ( 1 /2 + 2 - 1) < 2

Vậy 1< 1,5 < 2 => 1 <  x /x+y + y /y+x+ z /z+x < 2

nhớ tích cho mk nhé! 

14 tháng 1 2018

\(1< \frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{y+z}< 2\)

\(=>1< \left(x+y+z\right):2\left(x+y+z\right)< 2\)

\(=>1< \frac{1}{2}+2-1< 2\)

\(=>1< 1,5< 2\)

\(=>1< \frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}\)

12 tháng 2 2017

\(\frac{x}{z+t+y}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}=\frac{x+y+z+t}{z+t+y+z+t+x+t+x+y+x+y+z}=\frac{x+y+z+t}{3.\left(x+y+t+z\right)}=\frac{1}{3}\)

12 tháng 2 2017

bạn tự làm tiếp đi nhé

19 tháng 3 2020

\(x+\frac{1}{y}=y+\frac{1}{z}\Rightarrow x-y=\frac{1}{z}-\frac{1}{y}=\frac{z-y}{zy}\)

\(y+\frac{1}{z}=z+\frac{1}{x}\Rightarrow y-z=\frac{1}{x}-\frac{1}{z}=\frac{z-x}{xz}\)

\(z+\frac{1}{x}=x+\frac{1}{y}\Rightarrow z-x=\frac{1}{y}-\frac{1}{x}=\frac{x-y}{xy}\)

\(\Rightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)=\frac{y-z}{zy}\cdot\frac{z-x}{zx}\cdot\frac{x-y}{xy}\)

\(\Rightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)=\frac{\left(y-z\right)\left(z-x\right)\left(x-y\right)}{x^2y^2z^2}\)

\(\Rightarrow x^2y^2z^2\left(x-y\right)\left(y-z\right)\left(z-x\right)=\left(x-y\right)\left(y-z\right)\left(z-x\right)\)

\(\Rightarrow\left(x^2y^2z^2-1\right)\left(x-y\right)\left(y-z\right)\left(z-x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^2y^2z^2-1=0\\\left(x-y\right)\left(y-z\right)\left(z-x\right)=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x^2y^2z^2=1\\x=y=z\end{cases}}\)