Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho 3 số nguyên dương chứ bạn ơi !
Có : x/x+y > 0 => x/x+y > x/x+y+z
Tương tự : y/y+z > y/x+y+z ; z/z+x > z/x+y+z
=> x/x+y + y/y+z + z/z+x > x+y+z/x+y+z = 1
Lại có : x < x+y => x/x+y < 1 => 0 < x/x+y < 1 => x/x+y < x+z/x+y+z
Tương tự : y/y+z < y+x/x+y+z ; z/z+x < z+y/x+y+z
=> x/x+y + y/y+z + z/z+x < x+z+y+x+z+y/x+y+z = 2
=> ĐPCM
Tk mk nha
\(x\frac{x}{x+y}\)
Tương tự : \(\frac{y+x}{y+x+z}>\frac{y}{y+z}\)
\(\frac{z+y}{y+z+x}>\frac{z}{z+x}\)
\(\Rightarrow\frac{x+y+y+z+z+x}{x+y+z}>\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}\)
\(\Rightarrow\frac{2.\left(x+z+y\right)}{x+z+y}>\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}\)
\(\Rightarrowđpcm\)
Cho các số nguyên dương x, y, z. Chứng minh rằng:
\(1< \frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}< 2\)
Với x, y, z nguyên dương
Ta có: \(\frac{x}{x+y}>\frac{x}{x+y+z}\)
\(\frac{y}{y+z}>\frac{y}{x+y+z}\)
\(\frac{z}{z+x}>\frac{z}{x+y+z}\)
\(\Rightarrow\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x+y+z}{x+y+z}=1\)(1)
Mặt khác \(\frac{x}{x+y}< 1\Rightarrow\frac{x}{x+y}< \frac{x+z}{x+y+z}\)
\(\frac{y}{y+z}< \frac{y+x}{x+y+z}\)
\(\frac{z}{z+x}< \frac{z+y}{x+y+z}\)
\(\Rightarrow\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}< 2\)(2)
Từ (1) và (2) => dpcm
Có : x/x+y ; y/y+z ; z/z+x đều > 0
=> x/z+y + y/y+z + z/z+x > x/x+y+z + y/x+y+z + z/x+y+z = x+y+z/x+y+z = 1 (1)
Lại có : x,y,z > 0
=> 0 < x/x+y ; y/y+z ; z/z+x < 1
=> x/x+y + y/y+z + z/z+x < x+z/x+y+z + y+x/x+y+z + z+y/x+y+z = x+z+y+x+z+y/x+y+z = 2 (2)
Từ (1) và (2) => ĐPCM
Tk mk nha
1 < x /x+y + y /y+x+ z /z+x < 2
=> 1 < (x + y + z) / (2x + 2y + 2z) < 2
=> 1 < ( x + y + z) / 2 x ( x+ y +z) < 2
=> 1 < ( 1 /2 + 2 - 1) < 2
Vậy 1< 1,5 < 2 => 1 < x /x+y + y /y+x+ z /z+x < 2
nhớ tích cho mk nhé!
\(1< \frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{y+z}< 2\)
\(=>1< \left(x+y+z\right):2\left(x+y+z\right)< 2\)
\(=>1< \frac{1}{2}+2-1< 2\)
\(=>1< 1,5< 2\)
\(=>1< \frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}\)
\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+....+\frac{4031}{2015^2.2016^2}=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-.....-\frac{1}{2016^2}=1-\frac{1}{2016^2}\)
\(\frac{1}{2016^2}>0\Rightarrow A< 1\left(ĐPCM\right)\)
bạn chờ xíu mk lm câu sau nha
\(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{x+z}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
\(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{x+z}<\frac{x+z}{x+y+z}+\frac{y+x}{x+y+z}+\frac{z+y}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\Rightarrow1<\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{x+z}<2\)
\(\RightarrowĐPCM\)