K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\left(2^2\right)^{10n}+1+19\)

\(=4^{10n}+20\)

Ta có: \(4^{10n}⋮2\forall n\in N\)*

\(20⋮2\)

\(\Rightarrow4^{10n}+20⋮2\forall n\in N\)*

\(\Rightarrow\left(2^2\right)^{10n}+1+19⋮2\forall n\in N\)*

\(\Rightarrow\left(2^2\right)^{10n}+1+19\) là hợp số (đpcm)

10 tháng 10 2017

Ta có: \(\left(2^2\right)^{10n}+1+19\)

\(=4^{10n}+20\)

Ta có: \(4^{10n}⋮2\forall n\in N\)*

\(=20⋮2\)

\(\Rightarrow4^{10n}+20⋮2\forall n\in N\)*

\(\Rightarrow\left(2^2\right)^{10n}+1+19⋮2\forall n\in N\)*

\(\Rightarrow\left(2^2\right)^{10n}+1+19\) là hợp số ( đpcm )

Chúc bạn học tốt!

14 tháng 2 2016

moi hok lop 6 thoi

14 tháng 2 2016

Với n = 1, ta có 
1^3 + 9.1^2 + 2.1 = 12 chia hết cho 6 
Giả sử khẳng định đúng với n = k, tức là: 
k^3 + 9k^2 + 2k chia hết 6 
Đặt k^3 + 9k^2 + 2k = 6Q 
Ta sẽ CM khẳng định đúng với n = k + 1, ta có: 
(k + 1)^3 + 9(k + 1)^2 + 2(k + 1) 
= k^3 + 3k^2 + 3k + 1 + 9k^2 + 18k + 9 + 2k + 1 
= (k^3 + 9k^2 + 2k) + 3k^2 + 18k + 3k + 12 
= 6Q + (3k^2 + 21k) + 12 
= 6Q + 3k(k + 7) + 12 
= 6Q + 3k[(k + 1) + 6] + 12 
= 6Q + 3k(k + 1) + 6.3k + 12 
Vì k và k + 1 là 2 số nguyên liên tiếp nên: 
k(k + 1) chia hết cho 2 
=> 3k(k + 1) chia hết cho 3.2 = 6 
=> 6Q + 3k(k + 1) + 6.3k + 12 chia hết cho 6 
Vậy theo nguyên lý quy nạp ta chứng minh được 
n^3 + 9n^2 + 2n chia hết 3

3n+3+3n+1+2n+3+2n+2=3n+1(9+1)+2n+2(2+1)

=2.3.5.3n+3.2.2n+1=6.5.3n+6.2n+1

=6(5.3n+2n+1) chia hết cho 6

=>đpcm

27 tháng 10 2018

\(A=\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+...+\frac{1}{2019^2}\)

\(< B=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{2018.2020}\)

Mà \(B=\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2018.2020}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2018}-\frac{1}{2020}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2020}\right)< \frac{1}{4}\)

Vậy \(A< \frac{1}{4}\)

3 tháng 3 2018

\(A=\dfrac{1}{2^3}+\dfrac{1}{3^3}+...+\dfrac{1}{n^3}+\dfrac{1}{2017^3}\)

\(A=\dfrac{1}{8}+\dfrac{1}{3^3}+...+\dfrac{1}{n^3}+\dfrac{1}{2017^3}>\dfrac{1}{8}>\dfrac{1}{12}\left(1\right)\)

Xét thừa số tổng quát: \(\dfrac{1}{n^3}< \dfrac{1}{n^3-n}=\dfrac{1}{n\left(n^2-1\right)}=\dfrac{1}{\left(n-1\right)n\left(n+1\right)}\)

Hay:

\(A< \dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{\left(n-1\right)n\left(n+1\right)}+...+\dfrac{1}{2016.2017.2018}\)

\(A< \dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+..+\dfrac{1}{\left(n-1\right)n}-\dfrac{1}{n\left(n+1\right)}+...+\dfrac{1}{2016.2017}-\dfrac{1}{2017.2018}\right)\)

\(A< \dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{2017.2018}\right)=\dfrac{1}{4}-\dfrac{1}{2.2017.2018}< \dfrac{1}{4}< \dfrac{505}{5028}\left(2\right)\)

Từ (1) và (2) ta có đpcm

3 tháng 3 2018

Mình cảm ơn bạn nhiều lắm Mong bạn có thể giúp đỡ mình trong những cơ hội nhé thank you😊😊😊😊😊